Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +96 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -1.19 +/- 0.51
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:56a06ebaea1fae168c33cdd2414cd6ed781b4d48f751231163a72abc75c38b92
|
3 |
+
size 109537
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f4072081f70>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f4072082c00>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
15 |
+
"log_std_init": -2,
|
16 |
+
"ortho_init": false,
|
17 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
18 |
+
"optimizer_kwargs": {
|
19 |
+
"alpha": 0.99,
|
20 |
+
"eps": 1e-05,
|
21 |
+
"weight_decay": 0
|
22 |
+
}
|
23 |
+
},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
26 |
+
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
27 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
28 |
+
"_shape": null,
|
29 |
+
"dtype": null,
|
30 |
+
"_np_random": null
|
31 |
+
},
|
32 |
+
"action_space": {
|
33 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
34 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
35 |
+
"dtype": "float32",
|
36 |
+
"_shape": [
|
37 |
+
3
|
38 |
+
],
|
39 |
+
"low": "[-1. -1. -1.]",
|
40 |
+
"high": "[1. 1. 1.]",
|
41 |
+
"bounded_below": "[ True True True]",
|
42 |
+
"bounded_above": "[ True True True]",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 4,
|
46 |
+
"num_timesteps": 1000000,
|
47 |
+
"_total_timesteps": 1000000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1678873135701714396,
|
52 |
+
"learning_rate": 0.00096,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'collections.OrderedDict'>",
|
60 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAGqTmPrslU7sUPhA/GqTmPrslU7sUPhA/GqTmPrslU7sUPhA/GqTmPrslU7sUPhA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA5eBeP4BERD4PmSo/78y3v8pYpj/fg2u+dXGqvy1dnj6zvb2/GmaivwIksD+vnSk/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAapOY+uyVTuxQ+ED+kc409m6JZuxmacz0apOY+uyVTuxQ+ED+kc409m6JZuxmacz0apOY+uyVTuxQ+ED+kc409m6JZuxmacz0apOY+uyVTuxQ+ED+kc409m6JZuxmacz2UaA5LBEsGhpRoEnSUUpR1Lg==",
|
61 |
+
"achieved_goal": "[[ 0.45047075 -0.00322185 0.56344724]\n [ 0.45047075 -0.00322185 0.56344724]\n [ 0.45047075 -0.00322185 0.56344724]\n [ 0.45047075 -0.00322185 0.56344724]]",
|
62 |
+
"desired_goal": "[[ 0.8706191 0.19166756 0.666398 ]\n [-1.4359416 1.2995846 -0.22999524]\n [-1.3315874 0.30930462 -1.4823517 ]\n [-1.2687409 1.3760989 0.6625623 ]]",
|
63 |
+
"observation": "[[ 0.45047075 -0.00322185 0.56344724 0.06906822 -0.00332085 0.05947313]\n [ 0.45047075 -0.00322185 0.56344724 0.06906822 -0.00332085 0.05947313]\n [ 0.45047075 -0.00322185 0.56344724 0.06906822 -0.00332085 0.05947313]\n [ 0.45047075 -0.00322185 0.56344724 0.06906822 -0.00332085 0.05947313]]"
|
64 |
+
},
|
65 |
+
"_last_episode_starts": {
|
66 |
+
":type:": "<class 'numpy.ndarray'>",
|
67 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
68 |
+
},
|
69 |
+
"_last_original_obs": {
|
70 |
+
":type:": "<class 'collections.OrderedDict'>",
|
71 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAtiX8vIkkwj2yhj4+CuHovZ3jDj64zIw+9O4UPccIyzyhR3s95nQQvoK0hDzX8/I9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
72 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
73 |
+
"desired_goal": "[[-0.0307797 0.09479625 0.1860607 ]\n [-0.11371048 0.13954015 0.27499938]\n [ 0.0363607 0.02478446 0.06134761]\n [-0.14107093 0.01619935 0.11862915]]",
|
74 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
75 |
+
},
|
76 |
+
"_episode_num": 0,
|
77 |
+
"use_sde": true,
|
78 |
+
"sde_sample_freq": -1,
|
79 |
+
"_current_progress_remaining": 0.0,
|
80 |
+
"ep_info_buffer": {
|
81 |
+
":type:": "<class 'collections.deque'>",
|
82 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMILnJPV3es4b+UhpRSlIwBbJRLMowBdJRHQKcEtD7ZWaN1fZQoaAZoCWgPQwjzOAzmrxDnv5SGlFKUaBVLMmgWR0CnBEsFt8/mdX2UKGgGaAloD0MIoaF/gouV8b+UhpRSlGgVSzJoFkdApwPX4/NZ/3V9lChoBmgJaA9DCMWOxqF+l+y/lIaUUpRoFUsyaBZHQKcDc5+Ytxx1fZQoaAZoCWgPQwi78IPzqWPgv5SGlFKUaBVLMmgWR0CnBb+LWI43dX2UKGgGaAloD0MI/gqZK4Nq7L+UhpRSlGgVSzJoFkdApwVWeUY8+3V9lChoBmgJaA9DCCQPRBZpovS/lIaUUpRoFUsyaBZHQKcE46J66at1fZQoaAZoCWgPQwgUzQNY5Nf4v5SGlFKUaBVLMmgWR0CnBH+RxLkCdX2UKGgGaAloD0MI8fYgBORL5b+UhpRSlGgVSzJoFkdApwa/USZjQXV9lChoBmgJaA9DCBO1NLdCWOK/lIaUUpRoFUsyaBZHQKcGVkhib2F1fZQoaAZoCWgPQwjncoOhDqvpv5SGlFKUaBVLMmgWR0CnBeM2FWXDdX2UKGgGaAloD0MIPxu5bkp5+L+UhpRSlGgVSzJoFkdApwV/KQq7RXV9lChoBmgJaA9DCNdLUwQ4ffC/lIaUUpRoFUsyaBZHQKcHu0PYnOV1fZQoaAZoCWgPQwinW3aIfxj9v5SGlFKUaBVLMmgWR0CnB1JJPIn0dX2UKGgGaAloD0MIVoFaDB6m7r+UhpRSlGgVSzJoFkdApwbfYODraHV9lChoBmgJaA9DCBPSGoNOiO+/lIaUUpRoFUsyaBZHQKcGey57PY51fZQoaAZoCWgPQwhnLJrOTsYAwJSGlFKUaBVLMmgWR0CnCL+qR2bHdX2UKGgGaAloD0MIkWEVb2Qe9r+UhpRSlGgVSzJoFkdApwhWwC8vmHV9lChoBmgJaA9DCLVv7q8ed+e/lIaUUpRoFUsyaBZHQKcH5CYTkAB1fZQoaAZoCWgPQwi8z/HR4gz2v5SGlFKUaBVLMmgWR0CnB4Dj7yhBdX2UKGgGaAloD0MIVcA9z5+28b+UhpRSlGgVSzJoFkdApwnEI1LrX3V9lChoBmgJaA9DCLJIE+8AD/W/lIaUUpRoFUsyaBZHQKcJWyHEdeZ1fZQoaAZoCWgPQwjrHW6HhoUAwJSGlFKUaBVLMmgWR0CnCOhMJx//dX2UKGgGaAloD0MIu9HHfEAg4L+UhpRSlGgVSzJoFkdApwiEX1rZanV9lChoBmgJaA9DCLr0L0llitq/lIaUUpRoFUsyaBZHQKcKw6kIomZ1fZQoaAZoCWgPQwjoEaPnFrrIv5SGlFKUaBVLMmgWR0CnClp6IFeOdX2UKGgGaAloD0MIXKrSFtf45b+UhpRSlGgVSzJoFkdApwnnqJMxoXV9lChoBmgJaA9DCLTk8bT8wPm/lIaUUpRoFUsyaBZHQKcJg5myxA11fZQoaAZoCWgPQwhiTPp7Kbz1v5SGlFKUaBVLMmgWR0CnC9MkIHC5dX2UKGgGaAloD0MIAptz8Ezo6L+UhpRSlGgVSzJoFkdApwtqzJIUanV9lChoBmgJaA9DCGt9kdCW8/i/lIaUUpRoFUsyaBZHQKcK+KUmlZZ1fZQoaAZoCWgPQwgkfVpFf+j6v5SGlFKUaBVLMmgWR0CnCpSxqwhXdX2UKGgGaAloD0MItRmnIapw47+UhpRSlGgVSzJoFkdApw1/lKbrknV9lChoBmgJaA9DCAQAx549F/q/lIaUUpRoFUsyaBZHQKcNF2YfGMp1fZQoaAZoCWgPQwgQsFbtmhDov5SGlFKUaBVLMmgWR0CnDKVXeWOZdX2UKGgGaAloD0MILv62J0hs+L+UhpRSlGgVSzJoFkdApwxB2U0N0HV9lChoBmgJaA9DCIW2nEtxVfC/lIaUUpRoFUsyaBZHQKcPI+bmU4d1fZQoaAZoCWgPQwiXAWcpWc7jv5SGlFKUaBVLMmgWR0CnDruscQyzdX2UKGgGaAloD0MIbD6uDRWj8b+UhpRSlGgVSzJoFkdApw5JmmLtNXV9lChoBmgJaA9DCDkJpS+EHO+/lIaUUpRoFUsyaBZHQKcN5lyzXz11fZQoaAZoCWgPQwi+Sj52Fyjav5SGlFKUaBVLMmgWR0CnEMST6i0wdX2UKGgGaAloD0MIQL6ECg4v7r+UhpRSlGgVSzJoFkdApxBcRe1KG3V9lChoBmgJaA9DCBwJNNjUefO/lIaUUpRoFUsyaBZHQKcP6fKZDzB1fZQoaAZoCWgPQwjWbyamC3H4v5SGlFKUaBVLMmgWR0CnD4awdKdydX2UKGgGaAloD0MIVhFuMqoM9b+UhpRSlGgVSzJoFkdApxKHZ5AyEnV9lChoBmgJaA9DCJnxttJrM+W/lIaUUpRoFUsyaBZHQKcSHt65Xlt1fZQoaAZoCWgPQwiFXKlnQajnv5SGlFKUaBVLMmgWR0CnEazvZyuIdX2UKGgGaAloD0MIdqkR+pm69L+UhpRSlGgVSzJoFkdApxFJkNFz+3V9lChoBmgJaA9DCDo8hPHTuOu/lIaUUpRoFUsyaBZHQKcUNOJLuhN1fZQoaAZoCWgPQwim7souGFzRv5SGlFKUaBVLMmgWR0CnE8zOoo/idX2UKGgGaAloD0MIcD/ggQEE5r+UhpRSlGgVSzJoFkdApxNapHZsbnV9lChoBmgJaA9DCLtCHyxjw/K/lIaUUpRoFUsyaBZHQKcS9u8brC51fZQoaAZoCWgPQwjPhvwzgzj2v5SGlFKUaBVLMmgWR0CnFdbGWD6FdX2UKGgGaAloD0MI91s7URKS6r+UhpRSlGgVSzJoFkdApxVtuDSPVHV9lChoBmgJaA9DCFpj0AmhQ/G/lIaUUpRoFUsyaBZHQKcU+uDjBEd1fZQoaAZoCWgPQwgB++jUlU/vv5SGlFKUaBVLMmgWR0CnFJakIomYdX2UKGgGaAloD0MI3C3JAbsa5r+UhpRSlGgVSzJoFkdApxbaIHkcTHV9lChoBmgJaA9DCELuIkxRLvS/lIaUUpRoFUsyaBZHQKcWcQZn+Q51fZQoaAZoCWgPQwihgVg2c0j0v5SGlFKUaBVLMmgWR0CnFf3wTdtVdX2UKGgGaAloD0MIW5pbIazG67+UhpRSlGgVSzJoFkdApxWZyfcvd3V9lChoBmgJaA9DCKQ0m8dhsO2/lIaUUpRoFUsyaBZHQKcX2F2V3Ux1fZQoaAZoCWgPQwhuopbmVgjXv5SGlFKUaBVLMmgWR0CnF29WQwK0dX2UKGgGaAloD0MIzc6idyrg+L+UhpRSlGgVSzJoFkdApxb8cCHRC3V9lChoBmgJaA9DCB9I3jmUofi/lIaUUpRoFUsyaBZHQKcWmFkhA4Z1fZQoaAZoCWgPQwh8uU+OAgTwv5SGlFKUaBVLMmgWR0CnGNkLpiZwdX2UKGgGaAloD0MItOkI4GZx8r+UhpRSlGgVSzJoFkdApxhv+ERJ3HV9lChoBmgJaA9DCOkKthFPduu/lIaUUpRoFUsyaBZHQKcX/NzKcNJ1fZQoaAZoCWgPQwj/sKVHU73yv5SGlFKUaBVLMmgWR0CnF5iqZML4dX2UKGgGaAloD0MI5DEDlfHvz7+UhpRSlGgVSzJoFkdApxnb7Ikqt3V9lChoBmgJaA9DCCf3OxQF2gDAlIaUUpRoFUsyaBZHQKcZcu2Zy+91fZQoaAZoCWgPQwjB/1ayYyPvv5SGlFKUaBVLMmgWR0CnGP/keZG8dX2UKGgGaAloD0MIfuTWpNuS77+UhpRSlGgVSzJoFkdApxib1f3N93V9lChoBmgJaA9DCGSUZ14Ou/W/lIaUUpRoFUsyaBZHQKca3e4TbnJ1fZQoaAZoCWgPQwhpGhTNA9jrv5SGlFKUaBVLMmgWR0CnGnTtTkyUdX2UKGgGaAloD0MIwFq1a0La5b+UhpRSlGgVSzJoFkdApxoB46fapXV9lChoBmgJaA9DCBJLyt3n+Oi/lIaUUpRoFUsyaBZHQKcZndld1Md1fZQoaAZoCWgPQwiUap+OxwzUv5SGlFKUaBVLMmgWR0CnG930Gu9wdX2UKGgGaAloD0MIDhKifEEL2r+UhpRSlGgVSzJoFkdApxt0/yGzr3V9lChoBmgJaA9DCJF++zpwTvO/lIaUUpRoFUsyaBZHQKcbAh24d6t1fZQoaAZoCWgPQwial8PuO8b4v5SGlFKUaBVLMmgWR0CnGp3xOLzgdX2UKGgGaAloD0MIcayL22iA+r+UhpRSlGgVSzJoFkdApxzewzLwF3V9lChoBmgJaA9DCKKzzCIU2/e/lIaUUpRoFUsyaBZHQKccdZV4oql1fZQoaAZoCWgPQwh07+GS407xv5SGlFKUaBVLMmgWR0CnHALBKtgbdX2UKGgGaAloD0MIXiuhuyTO7b+UhpRSlGgVSzJoFkdApxuen889wHV9lChoBmgJaA9DCKIL6lvmdO2/lIaUUpRoFUsyaBZHQKcd3OqvNeN1fZQoaAZoCWgPQwjqXif1ZWnZv5SGlFKUaBVLMmgWR0CnHXP2oNutdX2UKGgGaAloD0MI2ubG9ISl7b+UhpRSlGgVSzJoFkdApx0BBE8aGnV9lChoBmgJaA9DCIxK6gQ00fW/lIaUUpRoFUsyaBZHQKccnOs1baB1fZQoaAZoCWgPQwh73SIw1jfsv5SGlFKUaBVLMmgWR0CnHt/dZaFFdX2UKGgGaAloD0MIai+i7Zg67r+UhpRSlGgVSzJoFkdApx52v8qFy3V9lChoBmgJaA9DCK9fsBu2re2/lIaUUpRoFUsyaBZHQKceA8jAzpJ1fZQoaAZoCWgPQwiez4B6M4oAwJSGlFKUaBVLMmgWR0CnHZ+jEehgdX2UKGgGaAloD0MI+vAsQUaAAMCUhpRSlGgVSzJoFkdApx/afxtpEnV9lChoBmgJaA9DCGcMc4I2OfC/lIaUUpRoFUsyaBZHQKcfcUY8+zN1fZQoaAZoCWgPQwj129eBc0brv5SGlFKUaBVLMmgWR0CnHv5qubI+dX2UKGgGaAloD0MI+DJRhNTt2r+UhpRSlGgVSzJoFkdApx6aJKraNHV9lChoBmgJaA9DCFBSYAFMmei/lIaUUpRoFUsyaBZHQKcg2xnFo+R1fZQoaAZoCWgPQwgstklFY+3nv5SGlFKUaBVLMmgWR0CnIHHTRYzSdX2UKGgGaAloD0MIxVkRNdHn+b+UhpRSlGgVSzJoFkdApx/+yquKXXV9lChoBmgJaA9DCKpla32R0N+/lIaUUpRoFUsyaBZHQKcfmrilzlt1ZS4="
|
83 |
+
},
|
84 |
+
"ep_success_buffer": {
|
85 |
+
":type:": "<class 'collections.deque'>",
|
86 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
87 |
+
},
|
88 |
+
"_n_updates": 31250,
|
89 |
+
"n_steps": 8,
|
90 |
+
"gamma": 0.99,
|
91 |
+
"gae_lambda": 0.9,
|
92 |
+
"ent_coef": 0.0,
|
93 |
+
"vf_coef": 0.4,
|
94 |
+
"max_grad_norm": 0.5,
|
95 |
+
"normalize_advantage": false
|
96 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:53230c033d41a06bd5603fed51e98185833dc5f131fb92b58240364734c00f27
|
3 |
+
size 45438
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f256e4d2a99af90a51ce90bd5d862a29597a51d2933c9705f0ab625745da5e95
|
3 |
+
size 46718
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f4072081f70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f4072082c00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678873135701714396, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAGqTmPrslU7sUPhA/GqTmPrslU7sUPhA/GqTmPrslU7sUPhA/GqTmPrslU7sUPhA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA5eBeP4BERD4PmSo/78y3v8pYpj/fg2u+dXGqvy1dnj6zvb2/GmaivwIksD+vnSk/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAapOY+uyVTuxQ+ED+kc409m6JZuxmacz0apOY+uyVTuxQ+ED+kc409m6JZuxmacz0apOY+uyVTuxQ+ED+kc409m6JZuxmacz0apOY+uyVTuxQ+ED+kc409m6JZuxmacz2UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.45047075 -0.00322185 0.56344724]\n [ 0.45047075 -0.00322185 0.56344724]\n [ 0.45047075 -0.00322185 0.56344724]\n [ 0.45047075 -0.00322185 0.56344724]]", "desired_goal": "[[ 0.8706191 0.19166756 0.666398 ]\n [-1.4359416 1.2995846 -0.22999524]\n [-1.3315874 0.30930462 -1.4823517 ]\n [-1.2687409 1.3760989 0.6625623 ]]", "observation": "[[ 0.45047075 -0.00322185 0.56344724 0.06906822 -0.00332085 0.05947313]\n [ 0.45047075 -0.00322185 0.56344724 0.06906822 -0.00332085 0.05947313]\n [ 0.45047075 -0.00322185 0.56344724 0.06906822 -0.00332085 0.05947313]\n [ 0.45047075 -0.00322185 0.56344724 0.06906822 -0.00332085 0.05947313]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAtiX8vIkkwj2yhj4+CuHovZ3jDj64zIw+9O4UPccIyzyhR3s95nQQvoK0hDzX8/I9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.0307797 0.09479625 0.1860607 ]\n [-0.11371048 0.13954015 0.27499938]\n [ 0.0363607 0.02478446 0.06134761]\n [-0.14107093 0.01619935 0.11862915]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMILnJPV3es4b+UhpRSlIwBbJRLMowBdJRHQKcEtD7ZWaN1fZQoaAZoCWgPQwjzOAzmrxDnv5SGlFKUaBVLMmgWR0CnBEsFt8/mdX2UKGgGaAloD0MIoaF/gouV8b+UhpRSlGgVSzJoFkdApwPX4/NZ/3V9lChoBmgJaA9DCMWOxqF+l+y/lIaUUpRoFUsyaBZHQKcDc5+Ytxx1fZQoaAZoCWgPQwi78IPzqWPgv5SGlFKUaBVLMmgWR0CnBb+LWI43dX2UKGgGaAloD0MI/gqZK4Nq7L+UhpRSlGgVSzJoFkdApwVWeUY8+3V9lChoBmgJaA9DCCQPRBZpovS/lIaUUpRoFUsyaBZHQKcE46J66at1fZQoaAZoCWgPQwgUzQNY5Nf4v5SGlFKUaBVLMmgWR0CnBH+RxLkCdX2UKGgGaAloD0MI8fYgBORL5b+UhpRSlGgVSzJoFkdApwa/USZjQXV9lChoBmgJaA9DCBO1NLdCWOK/lIaUUpRoFUsyaBZHQKcGVkhib2F1fZQoaAZoCWgPQwjncoOhDqvpv5SGlFKUaBVLMmgWR0CnBeM2FWXDdX2UKGgGaAloD0MIPxu5bkp5+L+UhpRSlGgVSzJoFkdApwV/KQq7RXV9lChoBmgJaA9DCNdLUwQ4ffC/lIaUUpRoFUsyaBZHQKcHu0PYnOV1fZQoaAZoCWgPQwinW3aIfxj9v5SGlFKUaBVLMmgWR0CnB1JJPIn0dX2UKGgGaAloD0MIVoFaDB6m7r+UhpRSlGgVSzJoFkdApwbfYODraHV9lChoBmgJaA9DCBPSGoNOiO+/lIaUUpRoFUsyaBZHQKcGey57PY51fZQoaAZoCWgPQwhnLJrOTsYAwJSGlFKUaBVLMmgWR0CnCL+qR2bHdX2UKGgGaAloD0MIkWEVb2Qe9r+UhpRSlGgVSzJoFkdApwhWwC8vmHV9lChoBmgJaA9DCLVv7q8ed+e/lIaUUpRoFUsyaBZHQKcH5CYTkAB1fZQoaAZoCWgPQwi8z/HR4gz2v5SGlFKUaBVLMmgWR0CnB4Dj7yhBdX2UKGgGaAloD0MIVcA9z5+28b+UhpRSlGgVSzJoFkdApwnEI1LrX3V9lChoBmgJaA9DCLJIE+8AD/W/lIaUUpRoFUsyaBZHQKcJWyHEdeZ1fZQoaAZoCWgPQwjrHW6HhoUAwJSGlFKUaBVLMmgWR0CnCOhMJx//dX2UKGgGaAloD0MIu9HHfEAg4L+UhpRSlGgVSzJoFkdApwiEX1rZanV9lChoBmgJaA9DCLr0L0llitq/lIaUUpRoFUsyaBZHQKcKw6kIomZ1fZQoaAZoCWgPQwjoEaPnFrrIv5SGlFKUaBVLMmgWR0CnClp6IFeOdX2UKGgGaAloD0MIXKrSFtf45b+UhpRSlGgVSzJoFkdApwnnqJMxoXV9lChoBmgJaA9DCLTk8bT8wPm/lIaUUpRoFUsyaBZHQKcJg5myxA11fZQoaAZoCWgPQwhiTPp7Kbz1v5SGlFKUaBVLMmgWR0CnC9MkIHC5dX2UKGgGaAloD0MIAptz8Ezo6L+UhpRSlGgVSzJoFkdApwtqzJIUanV9lChoBmgJaA9DCGt9kdCW8/i/lIaUUpRoFUsyaBZHQKcK+KUmlZZ1fZQoaAZoCWgPQwgkfVpFf+j6v5SGlFKUaBVLMmgWR0CnCpSxqwhXdX2UKGgGaAloD0MItRmnIapw47+UhpRSlGgVSzJoFkdApw1/lKbrknV9lChoBmgJaA9DCAQAx549F/q/lIaUUpRoFUsyaBZHQKcNF2YfGMp1fZQoaAZoCWgPQwgQsFbtmhDov5SGlFKUaBVLMmgWR0CnDKVXeWOZdX2UKGgGaAloD0MILv62J0hs+L+UhpRSlGgVSzJoFkdApwxB2U0N0HV9lChoBmgJaA9DCIW2nEtxVfC/lIaUUpRoFUsyaBZHQKcPI+bmU4d1fZQoaAZoCWgPQwiXAWcpWc7jv5SGlFKUaBVLMmgWR0CnDruscQyzdX2UKGgGaAloD0MIbD6uDRWj8b+UhpRSlGgVSzJoFkdApw5JmmLtNXV9lChoBmgJaA9DCDkJpS+EHO+/lIaUUpRoFUsyaBZHQKcN5lyzXz11fZQoaAZoCWgPQwi+Sj52Fyjav5SGlFKUaBVLMmgWR0CnEMST6i0wdX2UKGgGaAloD0MIQL6ECg4v7r+UhpRSlGgVSzJoFkdApxBcRe1KG3V9lChoBmgJaA9DCBwJNNjUefO/lIaUUpRoFUsyaBZHQKcP6fKZDzB1fZQoaAZoCWgPQwjWbyamC3H4v5SGlFKUaBVLMmgWR0CnD4awdKdydX2UKGgGaAloD0MIVhFuMqoM9b+UhpRSlGgVSzJoFkdApxKHZ5AyEnV9lChoBmgJaA9DCJnxttJrM+W/lIaUUpRoFUsyaBZHQKcSHt65Xlt1fZQoaAZoCWgPQwiFXKlnQajnv5SGlFKUaBVLMmgWR0CnEazvZyuIdX2UKGgGaAloD0MIdqkR+pm69L+UhpRSlGgVSzJoFkdApxFJkNFz+3V9lChoBmgJaA9DCDo8hPHTuOu/lIaUUpRoFUsyaBZHQKcUNOJLuhN1fZQoaAZoCWgPQwim7souGFzRv5SGlFKUaBVLMmgWR0CnE8zOoo/idX2UKGgGaAloD0MIcD/ggQEE5r+UhpRSlGgVSzJoFkdApxNapHZsbnV9lChoBmgJaA9DCLtCHyxjw/K/lIaUUpRoFUsyaBZHQKcS9u8brC51fZQoaAZoCWgPQwjPhvwzgzj2v5SGlFKUaBVLMmgWR0CnFdbGWD6FdX2UKGgGaAloD0MI91s7URKS6r+UhpRSlGgVSzJoFkdApxVtuDSPVHV9lChoBmgJaA9DCFpj0AmhQ/G/lIaUUpRoFUsyaBZHQKcU+uDjBEd1fZQoaAZoCWgPQwgB++jUlU/vv5SGlFKUaBVLMmgWR0CnFJakIomYdX2UKGgGaAloD0MI3C3JAbsa5r+UhpRSlGgVSzJoFkdApxbaIHkcTHV9lChoBmgJaA9DCELuIkxRLvS/lIaUUpRoFUsyaBZHQKcWcQZn+Q51fZQoaAZoCWgPQwihgVg2c0j0v5SGlFKUaBVLMmgWR0CnFf3wTdtVdX2UKGgGaAloD0MIW5pbIazG67+UhpRSlGgVSzJoFkdApxWZyfcvd3V9lChoBmgJaA9DCKQ0m8dhsO2/lIaUUpRoFUsyaBZHQKcX2F2V3Ux1fZQoaAZoCWgPQwhuopbmVgjXv5SGlFKUaBVLMmgWR0CnF29WQwK0dX2UKGgGaAloD0MIzc6idyrg+L+UhpRSlGgVSzJoFkdApxb8cCHRC3V9lChoBmgJaA9DCB9I3jmUofi/lIaUUpRoFUsyaBZHQKcWmFkhA4Z1fZQoaAZoCWgPQwh8uU+OAgTwv5SGlFKUaBVLMmgWR0CnGNkLpiZwdX2UKGgGaAloD0MItOkI4GZx8r+UhpRSlGgVSzJoFkdApxhv+ERJ3HV9lChoBmgJaA9DCOkKthFPduu/lIaUUpRoFUsyaBZHQKcX/NzKcNJ1fZQoaAZoCWgPQwj/sKVHU73yv5SGlFKUaBVLMmgWR0CnF5iqZML4dX2UKGgGaAloD0MI5DEDlfHvz7+UhpRSlGgVSzJoFkdApxnb7Ikqt3V9lChoBmgJaA9DCCf3OxQF2gDAlIaUUpRoFUsyaBZHQKcZcu2Zy+91fZQoaAZoCWgPQwjB/1ayYyPvv5SGlFKUaBVLMmgWR0CnGP/keZG8dX2UKGgGaAloD0MIfuTWpNuS77+UhpRSlGgVSzJoFkdApxib1f3N93V9lChoBmgJaA9DCGSUZ14Ou/W/lIaUUpRoFUsyaBZHQKca3e4TbnJ1fZQoaAZoCWgPQwhpGhTNA9jrv5SGlFKUaBVLMmgWR0CnGnTtTkyUdX2UKGgGaAloD0MIwFq1a0La5b+UhpRSlGgVSzJoFkdApxoB46fapXV9lChoBmgJaA9DCBJLyt3n+Oi/lIaUUpRoFUsyaBZHQKcZndld1Md1fZQoaAZoCWgPQwiUap+OxwzUv5SGlFKUaBVLMmgWR0CnG930Gu9wdX2UKGgGaAloD0MIDhKifEEL2r+UhpRSlGgVSzJoFkdApxt0/yGzr3V9lChoBmgJaA9DCJF++zpwTvO/lIaUUpRoFUsyaBZHQKcbAh24d6t1fZQoaAZoCWgPQwial8PuO8b4v5SGlFKUaBVLMmgWR0CnGp3xOLzgdX2UKGgGaAloD0MIcayL22iA+r+UhpRSlGgVSzJoFkdApxzewzLwF3V9lChoBmgJaA9DCKKzzCIU2/e/lIaUUpRoFUsyaBZHQKccdZV4oql1fZQoaAZoCWgPQwh07+GS407xv5SGlFKUaBVLMmgWR0CnHALBKtgbdX2UKGgGaAloD0MIXiuhuyTO7b+UhpRSlGgVSzJoFkdApxuen889wHV9lChoBmgJaA9DCKIL6lvmdO2/lIaUUpRoFUsyaBZHQKcd3OqvNeN1fZQoaAZoCWgPQwjqXif1ZWnZv5SGlFKUaBVLMmgWR0CnHXP2oNutdX2UKGgGaAloD0MI2ubG9ISl7b+UhpRSlGgVSzJoFkdApx0BBE8aGnV9lChoBmgJaA9DCIxK6gQ00fW/lIaUUpRoFUsyaBZHQKccnOs1baB1fZQoaAZoCWgPQwh73SIw1jfsv5SGlFKUaBVLMmgWR0CnHt/dZaFFdX2UKGgGaAloD0MIai+i7Zg67r+UhpRSlGgVSzJoFkdApx52v8qFy3V9lChoBmgJaA9DCK9fsBu2re2/lIaUUpRoFUsyaBZHQKceA8jAzpJ1fZQoaAZoCWgPQwiez4B6M4oAwJSGlFKUaBVLMmgWR0CnHZ+jEehgdX2UKGgGaAloD0MI+vAsQUaAAMCUhpRSlGgVSzJoFkdApx/afxtpEnV9lChoBmgJaA9DCGcMc4I2OfC/lIaUUpRoFUsyaBZHQKcfcUY8+zN1fZQoaAZoCWgPQwj129eBc0brv5SGlFKUaBVLMmgWR0CnHv5qubI+dX2UKGgGaAloD0MI+DJRhNTt2r+UhpRSlGgVSzJoFkdApx6aJKraNHV9lChoBmgJaA9DCFBSYAFMmei/lIaUUpRoFUsyaBZHQKcg2xnFo+R1fZQoaAZoCWgPQwgstklFY+3nv5SGlFKUaBVLMmgWR0CnIHHTRYzSdX2UKGgGaAloD0MIxVkRNdHn+b+UhpRSlGgVSzJoFkdApx/+yquKXXV9lChoBmgJaA9DCKpla32R0N+/lIaUUpRoFUsyaBZHQKcfmrilzlt1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 31250, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (309 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -1.1868554493412375, "std_reward": 0.5065138188414272, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-15T11:06:33.393914"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c7a512a1583d1a96a4bbe7054558bab2b1b34e3213e30392680b7b156a77de4d
|
3 |
+
size 3056
|