File size: 5,155 Bytes
7f275b7
 
 
 
 
 
 
 
 
 
 
 
 
 
95d8e16
7f275b7
 
 
 
 
 
 
 
 
 
 
 
 
95d8e16
7f275b7
 
 
 
 
95d8e16
7f275b7
 
 
95d8e16
 
7f275b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95d8e16
 
 
7f275b7
 
95d8e16
7f275b7
 
 
95d8e16
7f275b7
 
 
 
95d8e16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f275b7
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
---
library_name: transformers
language:
- lv
license: apache-2.0
base_model: openai/whisper-medium
tags:
- hf-asr-leaderboard
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_17_0
metrics:
- wer
model-index:
- name: Whisper medium LV - Felikss Kleins-{timestamp}
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Common Voice 17.0
      type: mozilla-foundation/common_voice_17_0
      config: lv
      split: None
      args: 'config: lv, split: test'
    metrics:
    - name: Wer
      type: wer
      value: 10.601196845400864
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper medium LV - Felikss Kleins-{timestamp}

This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Common Voice 17.0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2428
- Wer: 10.6012

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 10000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch   | Step  | Validation Loss | Wer     |
|:-------------:|:-------:|:-----:|:---------------:|:-------:|
| No log        | 0.02    | 200   | 0.2930          | 22.3576 |
| 0.9797        | 1.0116  | 400   | 0.2359          | 18.2083 |
| 0.357         | 2.0033  | 600   | 0.2274          | 16.4665 |
| 0.2582        | 2.0233  | 800   | 0.2111          | 15.6402 |
| 0.1718        | 3.0149  | 1000  | 0.2135          | 14.9883 |
| 0.1718        | 4.0066  | 1200  | 0.2090          | 14.2294 |
| 0.1355        | 4.0266  | 1400  | 0.2193          | 13.5537 |
| 0.1024        | 5.0183  | 1600  | 0.2255          | 14.5048 |
| 0.0836        | 6.0099  | 1800  | 0.2145          | 12.9751 |
| 0.0699        | 7.0015  | 2000  | 0.2232          | 13.2129 |
| 0.0699        | 7.0216  | 2200  | 0.2181          | 12.7155 |
| 0.0598        | 8.0132  | 2400  | 0.2192          | 12.7076 |
| 0.054         | 9.0048  | 2600  | 0.2348          | 13.0048 |
| 0.0452        | 9.0249  | 2800  | 0.2241          | 13.0940 |
| 0.0433        | 10.0165 | 3000  | 0.2406          | 12.6362 |
| 0.0433        | 11.0082 | 3200  | 0.2283          | 12.5332 |
| 0.0377        | 11.0282 | 3400  | 0.2293          | 12.2201 |
| 0.0317        | 12.0198 | 3600  | 0.2323          | 12.6144 |
| 0.0297        | 13.0114 | 3800  | 0.2309          | 12.2974 |
| 0.0267        | 14.0031 | 4000  | 0.2342          | 11.9011 |
| 0.0267        | 14.0231 | 4200  | 0.2286          | 12.1171 |
| 0.0243        | 15.0147 | 4400  | 0.2364          | 12.0854 |
| 0.0218        | 16.0064 | 4600  | 0.2405          | 12.1805 |
| 0.021         | 16.0264 | 4800  | 0.2422          | 12.0338 |
| 0.0173        | 17.0180 | 5000  | 0.2416          | 11.9387 |
| 0.0173        | 18.0097 | 5200  | 0.2421          | 12.0180 |
| 0.0175        | 19.0013 | 5400  | 0.2385          | 11.6613 |
| 0.0161        | 19.0214 | 5600  | 0.2442          | 11.9090 |
| 0.0136        | 20.013  | 5800  | 0.2411          | 11.4513 |
| 0.0135        | 21.0047 | 6000  | 0.2470          | 12.0418 |
| 0.0135        | 21.0247 | 6200  | 0.2446          | 11.5246 |
| 0.0117        | 22.0163 | 6400  | 0.2466          | 11.7386 |
| 0.0111        | 23.0080 | 6600  | 0.2498          | 12.0715 |
| 0.01          | 23.0280 | 6800  | 0.2487          | 12.0596 |
| 0.0094        | 24.0196 | 7000  | 0.2431          | 11.4315 |
| 0.0094        | 25.0113 | 7200  | 0.2460          | 11.5702 |
| 0.009         | 26.0029 | 7400  | 0.2436          | 11.2293 |
| 0.0077        | 26.0229 | 7600  | 0.2467          | 11.3423 |
| 0.007         | 27.0145 | 7800  | 0.2439          | 11.0054 |
| 0.0071        | 28.0062 | 8000  | 0.2430          | 11.1996 |
| 0.0071        | 28.0262 | 8200  | 0.2458          | 11.1798 |
| 0.0063        | 29.0178 | 8400  | 0.2456          | 11.0847 |
| 0.0049        | 30.0095 | 8600  | 0.2450          | 11.1303 |
| 0.0049        | 31.0011 | 8800  | 0.2467          | 11.0530 |
| 0.0053        | 31.0211 | 9000  | 0.2448          | 11.1085 |
| 0.0053        | 32.0128 | 9200  | 0.2467          | 11.2650 |
| 0.0041        | 33.0044 | 9400  | 0.2444          | 11.0728 |
| 0.0045        | 33.0245 | 9600  | 0.2426          | 10.6547 |
| 0.0036        | 34.0161 | 9800  | 0.2427          | 10.5972 |
| 0.004         | 35.0078 | 10000 | 0.2428          | 10.6012 |


### Framework versions

- Transformers 4.45.0.dev0
- Pytorch 2.0.1
- Datasets 3.0.0
- Tokenizers 0.19.1