File size: 9,245 Bytes
aaf2464
 
67d0528
 
aaf2464
67d0528
aaf2464
67d0528
 
 
 
 
 
 
 
 
 
aaf2464
67d0528
 
 
 
 
 
 
 
 
 
 
 
 
aaf2464
 
57405a4
aaf2464
57405a4
 
 
aaf2464
67d0528
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aaf2464
 
 
 
 
 
d056075
aaf2464
d056075
aaf2464
aaab13f
 
 
 
 
aaf2464
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d056075
aaf2464
 
 
 
 
 
 
 
 
 
 
d056075
aaf2464
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d056075
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9a0a94
67d0528
 
 
 
 
 
 
 
 
 
 
 
b9a0a94
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
---
language:
- en
license: apache-2.0
tags:
- pretrained
datasets:
- Skylion007/openwebtext
- c4
- wikimedia/wikipedia
- tiiuae/falcon-refinedweb
- izumi-lab/open-text-books
- togethercomputer/RedPajama-Data-V2
- databricks/databricks-dolly-15k
- euclaise/reddit-instruct-curated
- CohereForAI/aya_dataset
pipeline_tag: text-generation
widget:
- messages:
  - role: user
    content: Specs of a game about trolls and warriors in a fantasy world.
- messages:
  - role: user
    content: Reducing waste generation is essential to...
- messages:
  - role: user
    content: Water, planet, resource, future
- messages:
  - role: user
    content: Background story of an RPG game about wizards and dragons in a sci-fi
      world. The story takes place in a...
inference:
  parameters:
    max_new_tokens: 250
    do_sample: true
    temperature: 0.65
    top_p: 0.55
    top_k: 35
    repetition_penalty: 1.176
model-index:
- name: Minueza-32M-Base
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 21.33
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Felladrin/Minueza-32M-Base
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 26.39
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Felladrin/Minueza-32M-Base
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 24.8
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Felladrin/Minueza-32M-Base
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 47.45
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Felladrin/Minueza-32M-Base
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 53.2
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Felladrin/Minueza-32M-Base
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 0.38
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Felladrin/Minueza-32M-Base
      name: Open LLM Leaderboard
---

# Minueza-32M-Base

## Summary

Minueza-32M-Base is a foundation model with 32 million parameters trained from scratch on a large corpus of text in English.

It's available in the following formats: [Safetensors](https://huggingface.co/Felladrin/Minueza-32M-Base), [GGUF](https://huggingface.co/Felladrin/gguf-Minueza-32M-Base), and [ONNX](https://huggingface.co/Felladrin/onnx-Minueza-32M-Base).

And it's being released alongside some fine-tuned versions:
  - [Minueza-32M-UltraChat](https://huggingface.co/Felladrin/Minueza-32M-UltraChat): Trained on a single conversational dataset.
  - [Minueza-32M-Chat](https://huggingface.co/Felladrin/Minueza-32M-Chat): Trained on a mix of conversational datasets.
  - [Minueza-32Mx2-Chat](https://huggingface.co/Felladrin/Minueza-32Mx2-Chat): Sparse Mixture of Experts trained on interleaved conversational datasets.
  - [And more...](https://huggingface.co/models?other=base_model:Felladrin/Minueza-32M-Base)

## Intended Uses

This model was created with the following objectives in mind:

- Run on mobile web browsers via [Transformers.js](https://huggingface.co/docs/transformers.js).
- Run fast on machines without GPU.
- Serve as a base for fine-tunes using ChatML format, hence the two additional special tokens (`<|im_start|>` and `<|im_end|>`) with `<|im_end|>` as default EOS token.
  - ChatML works great for both instruction and chat models, so if all fine-tunes are made following the ChatML pattern, other users might benefit from the easiness of creating merges.

## Datasets

The model was trained on a subset of each of the following non-synthetic datasets:

- [Skylion007/openwebtext](https://huggingface.co/datasets/Skylion007/openwebtext)
- [c4](https://huggingface.co/datasets/c4)
- [wikimedia/wikipedia - 20231101.simple](https://huggingface.co/datasets/wikimedia/wikipedia/viewer/20231101.simple)
- [tiiuae/falcon-refinedweb](https://huggingface.co/datasets/tiiuae/falcon-refinedweb)
- [izumi-lab/open-text-books](https://huggingface.co/datasets/izumi-lab/open-text-books)
- [togethercomputer/RedPajama-Data-V2](https://huggingface.co/datasets/togethercomputer/RedPajama-Data-V2)
- [databricks/databricks-dolly-15k](https://huggingface.co/datasets/databricks/databricks-dolly-15k)
- [euclaise/reddit-instruct-curated](https://huggingface.co/datasets/euclaise/reddit-instruct-curated)
- [CohereForAI/aya_dataset - original english annotations](https://huggingface.co/datasets/CohereForAI/aya_dataset/viewer/default/train?f[language_code][value]=%27eng%27)

The subsets were interleaved to form the final training corpus of approximately 650 million tokens.

## Model Architecture

This is a transformer model with the Mistral architecture, trained on a context window of 2048 tokens.

| Configuration           | Value |
| :---------------------- | :---- |
| max_position_embeddings | 2048  |
| hidden_size             | 312   |
| intermediate_size       | 1092  |
| num_attention_heads     | 12    |
| num_hidden_layers       | 10    |
| num_key_value_heads     | 4     |
| vocab_size              | 32002 |

The pretraining was made with these hyperparameters and frameworks:

| Hyperparameter              | Value                                         |
| :-------------------------- | :-------------------------------------------- |
| learning_rate               | 5e-05                                         |
| train_batch_size            | 1                                             |
| eval_batch_size             | 1                                             |
| seed                        | 42                                            |
| gradient_accumulation_steps | 8                                             |
| total_train_batch_size      | 8                                             |
| optimizer                   | Adam with betas=(0.9,0.999) and epsilon=1e-08 |
| lr_scheduler_type           | linear                                        |

| Framework    | Version     |
| :----------- | :---------- |
| Transformers | 4.38.0.dev0 |
| Pytorch      | 2.1.2       |
| Datasets     | 2.16.1      |
| Tokenizers   | 0.15.1      |

## Usage

This is just a base model. For your task, you will likely want to perform application-specific fine-tuning as recommended above.

Also note that this model was trained on internet text data, which may contain biases, offensive or inappropriate content, and may produce incorrect or irrelevant responses. No evaluation has been conducted, so use with care.

Having that said, here's how you can run it:

```python
from transformers import pipeline

generate = pipeline("text-generation", "Felladrin/Minueza-32M-Base")

prompt = "The best way to improve your health is"

output = generate(
    prompt,
    max_new_tokens=256,
    do_sample=True,
    temperature=0.72,
    top_p=0.73,
    top_k=50,
    repetition_penalty=1.176,
)

print(output[0]["generated_text"])
```

## [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Felladrin__Minueza-32M-Base)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |28.92|
|AI2 Reasoning Challenge (25-Shot)|21.33|
|HellaSwag (10-Shot)              |26.39|
|MMLU (5-Shot)                    |24.80|
|TruthfulQA (0-shot)              |47.45|
|Winogrande (5-shot)              |53.20|
|GSM8k (5-shot)                   | 0.38|

## License

This model is licensed under the [Apache License 2.0](https://huggingface.co/Felladrin/Minueza-32M-Base/resolve/main/license.txt).