--- license: llama2 base_model: meta-llama/Llama-2-7b-chat-hf tags: - trl - sft - generated_from_trainer model-index: - name: AmsterdamDocClassificationLlama200T2Epochs results: [] --- # AmsterdamDocClassificationLlama200T2Epochs As part of the Assessing Large Language Models for Document Classification project by the Municipality of Amsterdam, we fine-tune Mistral, Llama, and GEITje for document classification. The fine-tuning is performed using the [AmsterdamBalancedFirst200Tokens](https://huggingface.co/datasets/FemkeBakker/AmsterdamBalancedFirst200Tokens) dataset, which consists of documents truncated to the first 200 tokens. In our research, we evaluate the fine-tuning of these LLMs across one, two, and three epochs. This model is a fine-tuned version of [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf) and has been fine-tuned for two epochs. It achieves the following results on the evaluation set: - Loss: 0.8173 ## Training and evaluation data - The training data consists of 9900 documents and their labels formatted into conversations. - The evaluation data consists of 1100 documents and their labels formatted into conversations. ## Training procedure See the [GitHub](https://github.com/Amsterdam-Internships/document-classification-using-large-language-models) for specifics about the training and the code. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.0345 | 0.1988 | 123 | 0.9800 | | 0.8537 | 0.3976 | 246 | 0.8808 | | 0.5807 | 0.5964 | 369 | 0.8503 | | 0.7419 | 0.7952 | 492 | 0.8413 | | 0.9967 | 0.9939 | 615 | 0.8406 | | 0.7252 | 1.1939 | 738 | 0.8301 | | 0.9605 | 1.3927 | 861 | 0.8214 | | 0.7785 | 1.5915 | 984 | 0.8186 | | 0.7233 | 1.7903 | 1107 | 0.8178 | | 0.8389 | 1.9891 | 1230 | 0.8173 | Training time: it took 80 minutes to fine-tune the model for two epochs. ### Framework versions - Transformers 4.41.1 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1 ### Acknowledgements This model was trained as part of [insert thesis info] in collaboration with Amsterdam Intelligence for the City of Amsterdam.