--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 base_model: distilbert-base-uncased model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: type: text-classification name: Text Classification dataset: name: emotion type: emotion args: default metrics: - type: accuracy value: 0.9385 name: Accuracy - type: f1 value: 0.9383492808338979 name: F1 --- # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1495 - Accuracy: 0.9385 - F1: 0.9383 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.1739 | 1.0 | 250 | 0.1827 | 0.931 | 0.9302 | | 0.1176 | 2.0 | 500 | 0.1567 | 0.9325 | 0.9326 | | 0.0994 | 3.0 | 750 | 0.1555 | 0.9385 | 0.9389 | | 0.08 | 4.0 | 1000 | 0.1496 | 0.9445 | 0.9443 | | 0.0654 | 5.0 | 1250 | 0.1495 | 0.9385 | 0.9383 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 1.18.0 - Tokenizers 0.10.3