Image-to-3D
File size: 20,395 Bytes
a8a63dd
 
 
 
 
 
8747d5d
a8a63dd
 
 
 
 
 
 
 
 
 
8747d5d
a8a63dd
 
 
 
 
 
8747d5d
 
 
 
 
 
 
 
a8a63dd
 
 
 
 
8747d5d
 
 
a8a63dd
 
 
 
 
 
 
 
 
 
 
 
8747d5d
 
 
a8a63dd
 
 
 
 
 
 
 
 
 
8747d5d
 
 
 
a8a63dd
 
 
 
 
 
 
 
 
 
 
 
8747d5d
 
 
a8a63dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8747d5d
 
 
a8a63dd
8747d5d
 
 
 
 
 
a8a63dd
 
 
8747d5d
 
 
a8a63dd
8747d5d
 
 
 
 
 
a8a63dd
 
 
 
 
 
 
8747d5d
 
 
 
 
 
 
 
 
 
 
a8a63dd
 
8747d5d
 
 
 
 
 
 
 
 
 
 
a8a63dd
 
8747d5d
 
 
 
 
a8a63dd
 
8747d5d
 
 
 
 
 
a8a63dd
 
 
8747d5d
 
 
 
 
 
 
a8a63dd
 
 
 
 
 
 
 
8747d5d
 
 
 
 
 
 
a8a63dd
 
 
 
8747d5d
 
 
 
 
 
 
a8a63dd
 
 
 
8747d5d
 
 
 
 
a8a63dd
 
8747d5d
 
 
 
 
 
a8a63dd
 
 
8747d5d
 
 
 
 
 
 
a8a63dd
 
 
 
 
 
 
 
8747d5d
 
 
 
 
 
 
a8a63dd
 
 
 
8747d5d
 
 
 
 
 
 
a8a63dd
 
 
 
 
 
 
 
 
 
 
 
 
8747d5d
 
 
a8a63dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8747d5d
 
 
a8a63dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8747d5d
a8a63dd
8747d5d
 
 
 
a8a63dd
 
 
 
 
 
 
 
 
 
8747d5d
 
 
a8a63dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8747d5d
a8a63dd
 
8747d5d
 
 
 
 
 
 
a8a63dd
 
 
 
 
 
 
8747d5d
 
 
 
 
a8a63dd
 
8747d5d
a8a63dd
 
 
 
 
 
 
 
 
 
8747d5d
 
 
 
a8a63dd
8747d5d
 
 
 
a8a63dd
8747d5d
 
 
a8a63dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8747d5d
 
 
 
 
 
 
a8a63dd
 
 
 
 
 
 
 
 
 
 
8747d5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8a63dd
8747d5d
 
 
 
 
 
 
 
a8a63dd
 
 
 
 
 
 
 
 
 
 
 
8747d5d
a8a63dd
 
 
 
 
 
 
 
 
 
 
 
8747d5d
a8a63dd
 
8747d5d
a8a63dd
 
 
 
 
 
 
 
 
8747d5d
a8a63dd
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
# Modified from https://github.com/huggingface/diffusers/blob/bc691231360a4cbc7d19a58742ebb8ed0f05e027/scripts/convert_original_stable_diffusion_to_diffusers.py

import argparse
import torch
import sys

sys.path.insert(0, ".")

from diffusers.models import (
    AutoencoderKL,
)
from omegaconf import OmegaConf
from diffusers.schedulers import DDIMScheduler
from diffusers.utils import logging
from typing import Any
from accelerate import init_empty_weights
from accelerate.utils import set_module_tensor_to_device
from mvdream.models import MultiViewUNetModel
from mvdream.pipeline_mvdream import MVDreamStableDiffusionPipeline
from transformers import CLIPTokenizer, CLIPTextModel

logger = logging.get_logger(__name__)


def assign_to_checkpoint(
    paths,
    checkpoint,
    old_checkpoint,
    attention_paths_to_split=None,
    additional_replacements=None,
    config=None,
):
    """
    This does the final conversion step: take locally converted weights and apply a global renaming to them. It splits
    attention layers, and takes into account additional replacements that may arise.
    Assigns the weights to the new checkpoint.
    """
    assert isinstance(
        paths, list
    ), "Paths should be a list of dicts containing 'old' and 'new' keys."

    # Splits the attention layers into three variables.
    if attention_paths_to_split is not None:
        for path, path_map in attention_paths_to_split.items():
            old_tensor = old_checkpoint[path]
            channels = old_tensor.shape[0] // 3

            target_shape = (-1, channels) if len(old_tensor.shape) == 3 else (-1)

            assert config is not None
            num_heads = old_tensor.shape[0] // config["num_head_channels"] // 3

            old_tensor = old_tensor.reshape(
                (num_heads, 3 * channels // num_heads) + old_tensor.shape[1:]
            )
            query, key, value = old_tensor.split(channels // num_heads, dim=1)

            checkpoint[path_map["query"]] = query.reshape(target_shape)
            checkpoint[path_map["key"]] = key.reshape(target_shape)
            checkpoint[path_map["value"]] = value.reshape(target_shape)

    for path in paths:
        new_path = path["new"]

        # These have already been assigned
        if (
            attention_paths_to_split is not None
            and new_path in attention_paths_to_split
        ):
            continue

        # Global renaming happens here
        new_path = new_path.replace("middle_block.0", "mid_block.resnets.0")
        new_path = new_path.replace("middle_block.1", "mid_block.attentions.0")
        new_path = new_path.replace("middle_block.2", "mid_block.resnets.1")

        if additional_replacements is not None:
            for replacement in additional_replacements:
                new_path = new_path.replace(replacement["old"], replacement["new"])

        # proj_attn.weight has to be converted from conv 1D to linear
        is_attn_weight = "proj_attn.weight" in new_path or (
            "attentions" in new_path and "to_" in new_path
        )
        shape = old_checkpoint[path["old"]].shape
        if is_attn_weight and len(shape) == 3:
            checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0]
        elif is_attn_weight and len(shape) == 4:
            checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0, 0]
        else:
            checkpoint[new_path] = old_checkpoint[path["old"]]


def shave_segments(path, n_shave_prefix_segments=1):
    """
    Removes segments. Positive values shave the first segments, negative shave the last segments.
    """
    if n_shave_prefix_segments >= 0:
        return ".".join(path.split(".")[n_shave_prefix_segments:])
    else:
        return ".".join(path.split(".")[:n_shave_prefix_segments])


def create_vae_diffusers_config(original_config, image_size: int):
    """
    Creates a config for the diffusers based on the config of the LDM model.
    """
    vae_params = original_config.model.params.first_stage_config.params.ddconfig
    _ = original_config.model.params.first_stage_config.params.embed_dim

    block_out_channels = [vae_params.ch * mult for mult in vae_params.ch_mult]
    down_block_types = ["DownEncoderBlock2D"] * len(block_out_channels)
    up_block_types = ["UpDecoderBlock2D"] * len(block_out_channels)

    config = {
        "sample_size": image_size,
        "in_channels": vae_params.in_channels,
        "out_channels": vae_params.out_ch,
        "down_block_types": tuple(down_block_types),
        "up_block_types": tuple(up_block_types),
        "block_out_channels": tuple(block_out_channels),
        "latent_channels": vae_params.z_channels,
        "layers_per_block": vae_params.num_res_blocks,
    }
    return config


def convert_ldm_vae_checkpoint(checkpoint, config):
    # extract state dict for VAE
    vae_state_dict = {}
    vae_key = "first_stage_model."
    keys = list(checkpoint.keys())
    for key in keys:
        if key.startswith(vae_key):
            vae_state_dict[key.replace(vae_key, "")] = checkpoint.get(key)

    new_checkpoint = {}

    new_checkpoint["encoder.conv_in.weight"] = vae_state_dict["encoder.conv_in.weight"]
    new_checkpoint["encoder.conv_in.bias"] = vae_state_dict["encoder.conv_in.bias"]
    new_checkpoint["encoder.conv_out.weight"] = vae_state_dict[
        "encoder.conv_out.weight"
    ]
    new_checkpoint["encoder.conv_out.bias"] = vae_state_dict["encoder.conv_out.bias"]
    new_checkpoint["encoder.conv_norm_out.weight"] = vae_state_dict[
        "encoder.norm_out.weight"
    ]
    new_checkpoint["encoder.conv_norm_out.bias"] = vae_state_dict[
        "encoder.norm_out.bias"
    ]

    new_checkpoint["decoder.conv_in.weight"] = vae_state_dict["decoder.conv_in.weight"]
    new_checkpoint["decoder.conv_in.bias"] = vae_state_dict["decoder.conv_in.bias"]
    new_checkpoint["decoder.conv_out.weight"] = vae_state_dict[
        "decoder.conv_out.weight"
    ]
    new_checkpoint["decoder.conv_out.bias"] = vae_state_dict["decoder.conv_out.bias"]
    new_checkpoint["decoder.conv_norm_out.weight"] = vae_state_dict[
        "decoder.norm_out.weight"
    ]
    new_checkpoint["decoder.conv_norm_out.bias"] = vae_state_dict[
        "decoder.norm_out.bias"
    ]

    new_checkpoint["quant_conv.weight"] = vae_state_dict["quant_conv.weight"]
    new_checkpoint["quant_conv.bias"] = vae_state_dict["quant_conv.bias"]
    new_checkpoint["post_quant_conv.weight"] = vae_state_dict["post_quant_conv.weight"]
    new_checkpoint["post_quant_conv.bias"] = vae_state_dict["post_quant_conv.bias"]

    # Retrieves the keys for the encoder down blocks only
    num_down_blocks = len(
        {
            ".".join(layer.split(".")[:3])
            for layer in vae_state_dict
            if "encoder.down" in layer
        }
    )
    down_blocks = {
        layer_id: [key for key in vae_state_dict if f"down.{layer_id}" in key]
        for layer_id in range(num_down_blocks)
    }

    # Retrieves the keys for the decoder up blocks only
    num_up_blocks = len(
        {
            ".".join(layer.split(".")[:3])
            for layer in vae_state_dict
            if "decoder.up" in layer
        }
    )
    up_blocks = {
        layer_id: [key for key in vae_state_dict if f"up.{layer_id}" in key]
        for layer_id in range(num_up_blocks)
    }

    for i in range(num_down_blocks):
        resnets = [
            key
            for key in down_blocks[i]
            if f"down.{i}" in key and f"down.{i}.downsample" not in key
        ]

        if f"encoder.down.{i}.downsample.conv.weight" in vae_state_dict:
            new_checkpoint[
                f"encoder.down_blocks.{i}.downsamplers.0.conv.weight"
            ] = vae_state_dict.pop(f"encoder.down.{i}.downsample.conv.weight")
            new_checkpoint[
                f"encoder.down_blocks.{i}.downsamplers.0.conv.bias"
            ] = vae_state_dict.pop(f"encoder.down.{i}.downsample.conv.bias")

        paths = renew_vae_resnet_paths(resnets)
        meta_path = {"old": f"down.{i}.block", "new": f"down_blocks.{i}.resnets"}
        assign_to_checkpoint(
            paths,
            new_checkpoint,
            vae_state_dict,
            additional_replacements=[meta_path],
            config=config,
        )

    mid_resnets = [key for key in vae_state_dict if "encoder.mid.block" in key]
    num_mid_res_blocks = 2
    for i in range(1, num_mid_res_blocks + 1):
        resnets = [key for key in mid_resnets if f"encoder.mid.block_{i}" in key]

        paths = renew_vae_resnet_paths(resnets)
        meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"}
        assign_to_checkpoint(
            paths,
            new_checkpoint,
            vae_state_dict,
            additional_replacements=[meta_path],
            config=config,
        )

    mid_attentions = [key for key in vae_state_dict if "encoder.mid.attn" in key]
    paths = renew_vae_attention_paths(mid_attentions)
    meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
    assign_to_checkpoint(
        paths,
        new_checkpoint,
        vae_state_dict,
        additional_replacements=[meta_path],
        config=config,
    )
    conv_attn_to_linear(new_checkpoint)

    for i in range(num_up_blocks):
        block_id = num_up_blocks - 1 - i
        resnets = [
            key
            for key in up_blocks[block_id]
            if f"up.{block_id}" in key and f"up.{block_id}.upsample" not in key
        ]

        if f"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict:
            new_checkpoint[
                f"decoder.up_blocks.{i}.upsamplers.0.conv.weight"
            ] = vae_state_dict[f"decoder.up.{block_id}.upsample.conv.weight"]
            new_checkpoint[
                f"decoder.up_blocks.{i}.upsamplers.0.conv.bias"
            ] = vae_state_dict[f"decoder.up.{block_id}.upsample.conv.bias"]

        paths = renew_vae_resnet_paths(resnets)
        meta_path = {"old": f"up.{block_id}.block", "new": f"up_blocks.{i}.resnets"}
        assign_to_checkpoint(
            paths,
            new_checkpoint,
            vae_state_dict,
            additional_replacements=[meta_path],
            config=config,
        )

    mid_resnets = [key for key in vae_state_dict if "decoder.mid.block" in key]
    num_mid_res_blocks = 2
    for i in range(1, num_mid_res_blocks + 1):
        resnets = [key for key in mid_resnets if f"decoder.mid.block_{i}" in key]

        paths = renew_vae_resnet_paths(resnets)
        meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"}
        assign_to_checkpoint(
            paths,
            new_checkpoint,
            vae_state_dict,
            additional_replacements=[meta_path],
            config=config,
        )

    mid_attentions = [key for key in vae_state_dict if "decoder.mid.attn" in key]
    paths = renew_vae_attention_paths(mid_attentions)
    meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
    assign_to_checkpoint(
        paths,
        new_checkpoint,
        vae_state_dict,
        additional_replacements=[meta_path],
        config=config,
    )
    conv_attn_to_linear(new_checkpoint)
    return new_checkpoint


def renew_vae_resnet_paths(old_list, n_shave_prefix_segments=0):
    """
    Updates paths inside resnets to the new naming scheme (local renaming)
    """
    mapping = []
    for old_item in old_list:
        new_item = old_item

        new_item = new_item.replace("nin_shortcut", "conv_shortcut")
        new_item = shave_segments(
            new_item, n_shave_prefix_segments=n_shave_prefix_segments
        )

        mapping.append({"old": old_item, "new": new_item})

    return mapping


def renew_vae_attention_paths(old_list, n_shave_prefix_segments=0):
    """
    Updates paths inside attentions to the new naming scheme (local renaming)
    """
    mapping = []
    for old_item in old_list:
        new_item = old_item

        new_item = new_item.replace("norm.weight", "group_norm.weight")
        new_item = new_item.replace("norm.bias", "group_norm.bias")

        new_item = new_item.replace("q.weight", "to_q.weight")
        new_item = new_item.replace("q.bias", "to_q.bias")

        new_item = new_item.replace("k.weight", "to_k.weight")
        new_item = new_item.replace("k.bias", "to_k.bias")

        new_item = new_item.replace("v.weight", "to_v.weight")
        new_item = new_item.replace("v.bias", "to_v.bias")

        new_item = new_item.replace("proj_out.weight", "to_out.0.weight")
        new_item = new_item.replace("proj_out.bias", "to_out.0.bias")

        new_item = shave_segments(
            new_item, n_shave_prefix_segments=n_shave_prefix_segments
        )

        mapping.append({"old": old_item, "new": new_item})

    return mapping


def conv_attn_to_linear(checkpoint):
    keys = list(checkpoint.keys())
    attn_keys = ["query.weight", "key.weight", "value.weight"]
    for key in keys:
        if ".".join(key.split(".")[-2:]) in attn_keys:
            if checkpoint[key].ndim > 2:
                checkpoint[key] = checkpoint[key][:, :, 0, 0]
        elif "proj_attn.weight" in key:
            if checkpoint[key].ndim > 2:
                checkpoint[key] = checkpoint[key][:, :, 0]


def create_unet_config(original_config) -> Any:
    return OmegaConf.to_container(
        original_config.model.params.unet_config.params, resolve=True
    )


def convert_from_original_mvdream_ckpt(checkpoint_path, original_config_file, device):
    checkpoint = torch.load(checkpoint_path, map_location=device)
    # print(f"Checkpoint: {checkpoint.keys()}")
    torch.cuda.empty_cache()

    original_config = OmegaConf.load(original_config_file)
    # print(f"Original Config: {original_config}")
    prediction_type = "epsilon"
    image_size = 256
    num_train_timesteps = (
        getattr(original_config.model.params, "timesteps", None) or 1000
    )
    beta_start = getattr(original_config.model.params, "linear_start", None) or 0.02
    beta_end = getattr(original_config.model.params, "linear_end", None) or 0.085
    scheduler = DDIMScheduler(
        beta_end=beta_end,
        beta_schedule="scaled_linear",
        beta_start=beta_start,
        num_train_timesteps=num_train_timesteps,
        steps_offset=1,
        clip_sample=False,
        set_alpha_to_one=False,
        prediction_type=prediction_type,
    )
    scheduler.register_to_config(clip_sample=False)

    # Convert the UNet2DConditionModel model.
    # upcast_attention = None
    # unet_config = create_unet_diffusers_config(original_config, image_size=image_size)
    # unet_config["upcast_attention"] = upcast_attention
    # with init_empty_weights():
    #     unet = UNet2DConditionModel(**unet_config)
    # converted_unet_checkpoint = convert_ldm_unet_checkpoint(
    #     checkpoint, unet_config, path=None, extract_ema=extract_ema
    # )
    # print(f"Unet Config: {original_config.model.params.unet_config.params}")
    unet_config = create_unet_config(original_config)
    unet = MultiViewUNetModel(**unet_config)
    unet.register_to_config(**unet_config)
    # print(f"Unet State Dict: {unet.state_dict().keys()}")
    unet.load_state_dict(
        {
            key.replace("model.diffusion_model.", ""): value
            for key, value in checkpoint.items()
            if key.replace("model.diffusion_model.", "") in unet.state_dict()
        }
    )
    for param_name, param in unet.state_dict().items():
        set_module_tensor_to_device(unet, param_name, device=device, value=param)

    # Convert the VAE model.
    vae_config = create_vae_diffusers_config(original_config, image_size=image_size)
    converted_vae_checkpoint = convert_ldm_vae_checkpoint(checkpoint, vae_config)

    if (
        "model" in original_config
        and "params" in original_config.model
        and "scale_factor" in original_config.model.params
    ):
        vae_scaling_factor = original_config.model.params.scale_factor
    else:
        vae_scaling_factor = 0.18215  # default SD scaling factor

    vae_config["scaling_factor"] = vae_scaling_factor

    with init_empty_weights():
        vae = AutoencoderKL(**vae_config)

    for param_name, param in converted_vae_checkpoint.items():
        set_module_tensor_to_device(vae, param_name, device=device, value=param)

    if original_config.model.params.unet_config.params.context_dim == 768:
        tokenizer: CLIPTokenizer = CLIPTokenizer.from_pretrained(
            "openai/clip-vit-large-patch14"
        )
        text_encoder: CLIPTextModel = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14").to(device=device)  # type: ignore
    elif original_config.model.params.unet_config.params.context_dim == 1024:
        tokenizer: CLIPTokenizer = CLIPTokenizer.from_pretrained(
            "stabilityai/stable-diffusion-2-1", subfolder="tokenizer"
        )
        text_encoder: CLIPTextModel = CLIPTextModel.from_pretrained("stabilityai/stable-diffusion-2-1", subfolder="text_encoder").to(device=device)  # type: ignore
    else:
        raise ValueError(
            f"Unknown context_dim: {original_config.model.paams.unet_config.params.context_dim}"
        )

    pipe = MVDreamStableDiffusionPipeline(
        vae=vae,
        unet=unet,
        tokenizer=tokenizer,
        text_encoder=text_encoder,
        scheduler=scheduler,
    )

    return pipe


if __name__ == "__main__":
    parser = argparse.ArgumentParser()

    parser.add_argument(
        "--checkpoint_path",
        default=None,
        type=str,
        required=True,
        help="Path to the checkpoint to convert.",
    )
    parser.add_argument(
        "--original_config_file",
        default=None,
        type=str,
        help="The YAML config file corresponding to the original architecture.",
    )
    parser.add_argument(
        "--to_safetensors",
        action="store_true",
        help="Whether to store pipeline in safetensors format or not.",
    )
    parser.add_argument(
        "--half", action="store_true", help="Save weights in half precision."
    )
    parser.add_argument(
        "--test",
        action="store_true",
        help="Whether to test inference after convertion.",
    )
    parser.add_argument(
        "--dump_path",
        default=None,
        type=str,
        required=True,
        help="Path to the output model.",
    )
    parser.add_argument(
        "--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)"
    )
    args = parser.parse_args()

    args.device = torch.device(
        args.device
        if args.device is not None
        else "cuda"
        if torch.cuda.is_available()
        else "cpu"
    )

    pipe = convert_from_original_mvdream_ckpt(
        checkpoint_path=args.checkpoint_path,
        original_config_file=args.original_config_file,
        device=args.device,
    )

    if args.half:
        pipe.to(torch_dtype=torch.float16)

    print(f"Saving pipeline to {args.dump_path}...")
    pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)

    if args.test:
        try:
            print(f"Testing each subcomponent of the pipeline...")
            images = pipe(
                prompt="Head of Hatsune Miku",
                negative_prompt="painting, bad quality, flat",
                output_type="pil",
                guidance_scale=7.5,
                num_inference_steps=50,
                device=args.device,
            )
            for i, image in enumerate(images):
                image.save(f"image_{i}.png")  # type: ignore

            print(f"Testing entire pipeline...")
            loaded_pipe: MVDreamStableDiffusionPipeline = MVDreamStableDiffusionPipeline.from_pretrained(args.dump_path, safe_serialization=args.to_safetensors)  # type: ignore
            images = loaded_pipe(
                prompt="Head of Hatsune Miku",
                negative_prompt="painting, bad quality, flat",
                output_type="pil",
                guidance_scale=7.5,
                num_inference_steps=50,
                device=args.device,
            )
            for i, image in enumerate(images):
                image.save(f"image_{i}.png")  # type: ignore
        except Exception as e:
            print(f"Failed to test inference: {e}")
            raise e from e
        print("Inference test passed!")