Image-to-3D
File size: 12,920 Bytes
a8a63dd
 
 
 
f0e1e27
a8a63dd
f0e1e27
a8a63dd
 
 
 
f0e1e27
a8a63dd
 
8747d5d
 
 
a8a63dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8747d5d
a8a63dd
 
 
8747d5d
 
 
 
 
a8a63dd
8747d5d
 
 
a8a63dd
 
 
 
 
 
8747d5d
a8a63dd
 
 
 
 
 
 
 
 
 
 
8747d5d
 
 
a8a63dd
 
 
 
 
 
 
 
 
8747d5d
a8a63dd
 
 
8747d5d
a8a63dd
f0e1e27
a8a63dd
f0e1e27
a8a63dd
 
 
 
8747d5d
a8a63dd
8747d5d
a8a63dd
 
 
 
 
f0e1e27
8747d5d
a8a63dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8747d5d
 
 
a8a63dd
 
 
 
 
 
 
 
 
 
8747d5d
 
 
 
 
a8a63dd
 
 
 
8747d5d
 
 
a8a63dd
 
 
8747d5d
 
 
 
 
 
a8a63dd
 
 
 
 
8747d5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8a63dd
 
 
 
 
8747d5d
 
 
 
 
 
 
a8a63dd
8747d5d
 
 
 
 
 
 
a8a63dd
 
 
 
 
 
8747d5d
 
 
a8a63dd
 
8747d5d
 
 
 
 
 
a8a63dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8747d5d
 
 
 
 
 
 
 
 
 
 
 
a8a63dd
 
 
 
 
 
f0e1e27
 
 
a8a63dd
8747d5d
 
 
a8a63dd
 
 
8747d5d
 
 
 
 
 
 
 
 
 
 
 
 
 
a8a63dd
8747d5d
 
 
a8a63dd
 
 
 
 
 
 
 
 
 
 
 
 
8747d5d
a8a63dd
 
 
 
 
 
8747d5d
a8a63dd
 
 
 
 
 
 
8747d5d
 
 
a8a63dd
 
 
8747d5d
 
 
 
 
 
a8a63dd
 
 
 
 
 
 
8747d5d
 
 
 
 
 
 
 
 
 
 
f0e1e27
8747d5d
 
a8a63dd
 
 
 
 
 
f0e1e27
 
 
a8a63dd
8747d5d
 
 
a8a63dd
 
 
8747d5d
 
 
 
 
 
 
 
 
 
 
 
 
 
a8a63dd
8747d5d
 
 
a8a63dd
 
 
 
 
 
 
 
 
 
 
 
 
8747d5d
a8a63dd
 
 
 
 
 
8747d5d
a8a63dd
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
# obtained and modified from https://github.com/bytedance/MVDream

import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.amp.autocast_mode import autocast

from inspect import isfunction
from einops import rearrange, repeat
from typing import Optional, Any
from .util import checkpoint, zero_module

try:
    import xformers  # type: ignore
    import xformers.ops  # type: ignore

    XFORMERS_IS_AVAILBLE = True
except:
    XFORMERS_IS_AVAILBLE = False

# CrossAttn precision handling
import os

_ATTN_PRECISION = os.environ.get("ATTN_PRECISION", "fp32")


def default(val, d):
    if val is not None:
        return val
    return d() if isfunction(d) else d


class GEGLU(nn.Module):
    def __init__(self, dim_in, dim_out):
        super().__init__()
        self.proj = nn.Linear(dim_in, dim_out * 2)

    def forward(self, x):
        x, gate = self.proj(x).chunk(2, dim=-1)
        return x * F.gelu(gate)


class FeedForward(nn.Module):
    def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.0):
        super().__init__()
        inner_dim = int(dim * mult)
        dim_out = default(dim_out, dim)
        project_in = (
            nn.Sequential(nn.Linear(dim, inner_dim), nn.GELU())
            if not glu
            else GEGLU(dim, inner_dim)
        )

        self.net = nn.Sequential(
            project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out)
        )

    def forward(self, x):
        return self.net(x)


class CrossAttention(nn.Module):
    def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0):
        super().__init__()
        inner_dim = dim_head * heads
        context_dim = default(context_dim, query_dim)

        self.scale = dim_head**-0.5
        self.heads = heads

        self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
        self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
        self.to_v = nn.Linear(context_dim, inner_dim, bias=False)

        self.to_out = nn.Sequential(
            nn.Linear(inner_dim, query_dim), nn.Dropout(dropout)
        )

    def forward(self, x, context=None, mask=None):
        h = self.heads

        q = self.to_q(x)
        context = default(context, x)
        k = self.to_k(context)
        v = self.to_v(context)

        q, k, v = map(lambda t: rearrange(t, "b n (h d) -> (b h) n d", h=h), (q, k, v))

        # force cast to fp32 to avoid overflowing
        if _ATTN_PRECISION == "fp32":
            with autocast(enabled=False, device_type="cuda"):
                q, k = q.float(), k.float()
                sim = torch.einsum("b i d, b j d -> b i j", q, k) * self.scale
        else:
            sim = torch.einsum("b i d, b j d -> b i j", q, k) * self.scale

        del q, k

        if mask is not None:
            mask = rearrange(mask, "b ... -> b (...)")
            max_neg_value = -torch.finfo(sim.dtype).max
            mask = repeat(mask, "b j -> (b h) () j", h=h)
            sim.masked_fill_(~mask, max_neg_value)

        # attention, what we cannot get enough of
        sim = sim.softmax(dim=-1)

        out = torch.einsum("b i j, b j d -> b i d", sim, v)
        out = rearrange(out, "(b h) n d -> b n (h d)", h=h)
        return self.to_out(out)


class MemoryEfficientCrossAttention(nn.Module):
    # https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223
    def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0):
        super().__init__()
        # print(f"Setting up {self.__class__.__name__}. Query dim is {query_dim}, context_dim is {context_dim} and using {heads} heads.")
        inner_dim = dim_head * heads
        context_dim = default(context_dim, query_dim)

        self.heads = heads
        self.dim_head = dim_head

        self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
        self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
        self.to_v = nn.Linear(context_dim, inner_dim, bias=False)

        self.to_out = nn.Sequential(
            nn.Linear(inner_dim, query_dim), nn.Dropout(dropout)
        )
        self.attention_op: Optional[Any] = None

    def forward(self, x, context=None, mask=None):
        q = self.to_q(x)
        context = default(context, x)
        k = self.to_k(context)
        v = self.to_v(context)

        b, _, _ = q.shape
        q, k, v = map(
            lambda t: t.unsqueeze(3)
            .reshape(b, t.shape[1], self.heads, self.dim_head)
            .permute(0, 2, 1, 3)
            .reshape(b * self.heads, t.shape[1], self.dim_head)
            .contiguous(),
            (q, k, v),
        )

        # actually compute the attention, what we cannot get enough of
        out = xformers.ops.memory_efficient_attention(
            q, k, v, attn_bias=None, op=self.attention_op
        )

        if mask is not None:
            raise NotImplementedError
        out = (
            out.unsqueeze(0)
            .reshape(b, self.heads, out.shape[1], self.dim_head)
            .permute(0, 2, 1, 3)
            .reshape(b, out.shape[1], self.heads * self.dim_head)
        )
        return self.to_out(out)


class BasicTransformerBlock(nn.Module):
    ATTENTION_MODES = {
        "softmax": CrossAttention,
        "softmax-xformers": MemoryEfficientCrossAttention,
    }  # vanilla attention

    def __init__(
        self,
        dim,
        n_heads,
        d_head,
        dropout=0.0,
        context_dim=None,
        gated_ff=True,
        checkpoint=True,
        disable_self_attn=False,
    ):
        super().__init__()
        attn_mode = "softmax-xformers" if XFORMERS_IS_AVAILBLE else "softmax"
        assert attn_mode in self.ATTENTION_MODES
        attn_cls = self.ATTENTION_MODES[attn_mode]
        self.disable_self_attn = disable_self_attn
        self.attn1 = attn_cls(
            query_dim=dim,
            heads=n_heads,
            dim_head=d_head,
            dropout=dropout,
            context_dim=context_dim if self.disable_self_attn else None,
        )  # is a self-attention if not self.disable_self_attn
        self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
        self.attn2 = attn_cls(
            query_dim=dim,
            context_dim=context_dim,
            heads=n_heads,
            dim_head=d_head,
            dropout=dropout,
        )  # is self-attn if context is none
        self.norm1 = nn.LayerNorm(dim)
        self.norm2 = nn.LayerNorm(dim)
        self.norm3 = nn.LayerNorm(dim)
        self.checkpoint = checkpoint

    def forward(self, x, context=None):
        return checkpoint(
            self._forward, (x, context), self.parameters(), self.checkpoint
        )

    def _forward(self, x, context=None):
        x = (
            self.attn1(
                self.norm1(x), context=context if self.disable_self_attn else None
            )
            + x
        )
        x = self.attn2(self.norm2(x), context=context) + x
        x = self.ff(self.norm3(x)) + x
        return x


class SpatialTransformer(nn.Module):
    """
    Transformer block for image-like data.
    First, project the input (aka embedding)
    and reshape to b, t, d.
    Then apply standard transformer action.
    Finally, reshape to image
    NEW: use_linear for more efficiency instead of the 1x1 convs
    """

    def __init__(
        self,
        in_channels,
        n_heads,
        d_head,
        depth=1,
        dropout=0.0,
        context_dim=None,
        disable_self_attn=False,
        use_linear=False,
        use_checkpoint=True,
    ):
        super().__init__()
        assert context_dim is not None
        if not isinstance(context_dim, list):
            context_dim = [context_dim]
        self.in_channels = in_channels
        inner_dim = n_heads * d_head
        self.norm = nn.GroupNorm(
            num_groups=32, num_channels=in_channels, eps=1e-6, affine=True
        )
        if not use_linear:
            self.proj_in = nn.Conv2d(
                in_channels, inner_dim, kernel_size=1, stride=1, padding=0
            )
        else:
            self.proj_in = nn.Linear(in_channels, inner_dim)

        self.transformer_blocks = nn.ModuleList(
            [
                BasicTransformerBlock(
                    inner_dim,
                    n_heads,
                    d_head,
                    dropout=dropout,
                    context_dim=context_dim[d],
                    disable_self_attn=disable_self_attn,
                    checkpoint=use_checkpoint,
                )
                for d in range(depth)
            ]
        )
        if not use_linear:
            self.proj_out = zero_module(
                nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
            )
        else:
            self.proj_out = zero_module(nn.Linear(in_channels, inner_dim))
        self.use_linear = use_linear

    def forward(self, x, context=None):
        # note: if no context is given, cross-attention defaults to self-attention
        if not isinstance(context, list):
            context = [context]
        b, c, h, w = x.shape
        x_in = x
        x = self.norm(x)
        if not self.use_linear:
            x = self.proj_in(x)
        x = rearrange(x, "b c h w -> b (h w) c").contiguous()
        if self.use_linear:
            x = self.proj_in(x)
        for i, block in enumerate(self.transformer_blocks):
            x = block(x, context=context[i])
        if self.use_linear:
            x = self.proj_out(x)
        x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w).contiguous()
        if not self.use_linear:
            x = self.proj_out(x)
        return x + x_in


class BasicTransformerBlock3D(BasicTransformerBlock):
    def forward(self, x, context=None, num_frames=1):
        return checkpoint(
            self._forward, (x, context, num_frames), self.parameters(), self.checkpoint
        )

    def _forward(self, x, context=None, num_frames=1):
        x = rearrange(x, "(b f) l c -> b (f l) c", f=num_frames).contiguous()
        x = (
            self.attn1(
                self.norm1(x), context=context if self.disable_self_attn else None
            )
            + x
        )
        x = rearrange(x, "b (f l) c -> (b f) l c", f=num_frames).contiguous()
        x = self.attn2(self.norm2(x), context=context) + x
        x = self.ff(self.norm3(x)) + x
        return x


class SpatialTransformer3D(nn.Module):
    """3D self-attention"""

    def __init__(
        self,
        in_channels,
        n_heads,
        d_head,
        depth=1,
        dropout=0.0,
        context_dim=None,
        disable_self_attn=False,
        use_linear=True,
        use_checkpoint=True,
    ):
        super().__init__()
        assert context_dim is not None
        if not isinstance(context_dim, list):
            context_dim = [context_dim]
        self.in_channels = in_channels
        inner_dim = n_heads * d_head
        self.norm = nn.GroupNorm(
            num_groups=32, num_channels=in_channels, eps=1e-6, affine=True
        )
        if not use_linear:
            self.proj_in = nn.Conv2d(
                in_channels, inner_dim, kernel_size=1, stride=1, padding=0
            )
        else:
            self.proj_in = nn.Linear(in_channels, inner_dim)

        self.transformer_blocks = nn.ModuleList(
            [
                BasicTransformerBlock3D(
                    inner_dim,
                    n_heads,
                    d_head,
                    dropout=dropout,
                    context_dim=context_dim[d],
                    disable_self_attn=disable_self_attn,
                    checkpoint=use_checkpoint,
                )
                for d in range(depth)
            ]
        )
        if not use_linear:
            self.proj_out = zero_module(
                nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
            )
        else:
            self.proj_out = zero_module(nn.Linear(in_channels, inner_dim))
        self.use_linear = use_linear

    def forward(self, x, context=None, num_frames=1):
        # note: if no context is given, cross-attention defaults to self-attention
        if not isinstance(context, list):
            context = [context]
        b, c, h, w = x.shape
        x_in = x
        x = self.norm(x)
        if not self.use_linear:
            x = self.proj_in(x)
        x = rearrange(x, "b c h w -> b (h w) c").contiguous()
        if self.use_linear:
            x = self.proj_in(x)
        for i, block in enumerate(self.transformer_blocks):
            x = block(x, context=context[i], num_frames=num_frames)
        if self.use_linear:
            x = self.proj_out(x)
        x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w).contiguous()
        if not self.use_linear:
            x = self.proj_out(x)
        return x + x_in