Marcus Cedric R. Idia
commited on
Commit
·
bb8ceb9
1
Parent(s):
51d6404
Update README.md
Browse files
README.md
CHANGED
@@ -9,20 +9,86 @@ language:
|
|
9 |
- en
|
10 |
pipeline_tag: question-answering
|
11 |
---
|
12 |
-
|
13 |
|
|
|
14 |
|
15 |
-
|
16 |
-
- load_in_8bit: False
|
17 |
-
- load_in_4bit: True
|
18 |
-
- llm_int8_threshold: 6.0
|
19 |
-
- llm_int8_skip_modules: None
|
20 |
-
- llm_int8_enable_fp32_cpu_offload: False
|
21 |
-
- llm_int8_has_fp16_weight: False
|
22 |
-
- bnb_4bit_quant_type: nf4
|
23 |
-
- bnb_4bit_use_double_quant: False
|
24 |
-
- bnb_4bit_compute_dtype: float16
|
25 |
-
### Framework versions
|
26 |
|
|
|
27 |
|
28 |
-
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
- en
|
10 |
pipeline_tag: question-answering
|
11 |
---
|
12 |
+
Here is a README.md explaining how to run the Archimedes model locally:
|
13 |
|
14 |
+
# Archimedes Model
|
15 |
|
16 |
+
This README provides instructions for running the Archimedes conversational AI assistant locally.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
+
## Requirements
|
19 |
|
20 |
+
- Python 3.6+
|
21 |
+
- [Transformers](https://huggingface.co/docs/transformers/installation)
|
22 |
+
- [Peft](https://github.com/hazyresearch/peft)
|
23 |
+
- PyTorch
|
24 |
+
- Access to the LLAMA 2 model files or a cloned public model
|
25 |
+
|
26 |
+
Install requirements:
|
27 |
+
|
28 |
+
```
|
29 |
+
!pip install huggingface
|
30 |
+
!pip install -q -U trl transformers accelerate git+https://github.com/huggingface/peft.git
|
31 |
+
!pip install -q datasets bitsandbytes einops wandb
|
32 |
+
```
|
33 |
+
|
34 |
+
## Usage
|
35 |
+
|
36 |
+
```python
|
37 |
+
import transformers
|
38 |
+
from peft import LoraConfig, get_peft_model
|
39 |
+
import torch
|
40 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
41 |
+
|
42 |
+
# Load LLAMA 2 model
|
43 |
+
model_name = "meta-llama/Llama-2-13b-chat-hf"
|
44 |
+
|
45 |
+
# Quantization configuration
|
46 |
+
bnb_config = BitsAndBytesConfig(
|
47 |
+
load_in_4bit=True,
|
48 |
+
bnb_4bit_quant_type="nf4",
|
49 |
+
bnb_4bit_compute_dtype=torch.float16,
|
50 |
+
)
|
51 |
+
|
52 |
+
# Load model
|
53 |
+
model = AutoModelForCausalLM.from_pretrained(
|
54 |
+
model_name,
|
55 |
+
quantization_config=bnb_config,
|
56 |
+
trust_remote_code=True
|
57 |
+
)
|
58 |
+
|
59 |
+
# Load LoRA configuration
|
60 |
+
lora_config = LoraConfig.from_pretrained('harpyerr/archimedes-300s-7b-chat')
|
61 |
+
model = get_peft_model(model, lora_config)
|
62 |
+
|
63 |
+
# Load tokenizer
|
64 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
65 |
+
tokenizer.pad_token = tokenizer.eos_token
|
66 |
+
|
67 |
+
# Define prompt
|
68 |
+
text = "Can you tell me who made Space-X?"
|
69 |
+
prompt = "You are a helpful assistant. Please provide an informative response. \n\n" + text
|
70 |
+
|
71 |
+
# Generate response
|
72 |
+
device = "cuda:0"
|
73 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(device)
|
74 |
+
outputs = model.generate(**inputs, max_new_tokens=100)
|
75 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
76 |
+
```
|
77 |
+
|
78 |
+
This loads the LLAMA 2 model, applies 4-bit quantization and LoRA optimizations, constructs a prompt, and generates a response.
|
79 |
+
|
80 |
+
See the [docs](https://huggingface.co/docs/transformers/model_doc/auto#transformers.AutoModelForCausalLM) for more details.
|
81 |
+
|
82 |
+
## Training
|
83 |
+
|
84 |
+
The model was trained by Anthropic using self-supervised learning. See the [model card](https://huggingface.co/USERNAME/archimedes) for details.
|
85 |
+
|
86 |
+
## License
|
87 |
+
|
88 |
+
Archimedes is released under the Apache 2.0 license.
|
89 |
+
|
90 |
+
## Citation
|
91 |
+
|
92 |
+
Coming soon!
|
93 |
+
|
94 |
+
Please ⭐ if this repository was helpful!
|