Text Generation
Transformers
Safetensors
Finnish
llama
finnish
conversational
text-generation-inference
File size: 66,992 Bytes
5a63fc6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
# coding=utf-8
# Copyright 2021 The Google Flax Team Authors and The HuggingFace Inc. team.
# Modifications copyright 2022 Xinyang Geng
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Callable, Optional, Tuple
from collections import OrderedDict
from typing import Mapping

import numpy as np

import flax.linen as nn
import jax
import jax.numpy as jnp
from flax.core.frozen_dict import FrozenDict, freeze, unfreeze
from flax.linen import combine_masks, make_causal_mask
from flax.linen import partitioning as nn_partitioning
from flax.linen.attention import dot_product_attention_weights
from flax.traverse_util import flatten_dict, unflatten_dict
from jax import lax
from jax.sharding import PartitionSpec

from transformers.configuration_utils import PretrainedConfig
from transformers.modeling_flax_outputs import (
    FlaxBaseModelOutputWithPastAndCrossAttentions,
    FlaxBaseModelOutputWithPooling,
    FlaxBaseModelOutputWithPoolingAndCrossAttentions,
    FlaxCausalLMOutputWithCrossAttentions,
    FlaxMaskedLMOutput,
    FlaxMultipleChoiceModelOutput,
    FlaxQuestionAnsweringModelOutput,
    FlaxSequenceClassifierOutput,
    FlaxTokenClassifierOutput,
)
from transformers.modeling_flax_utils import (
    ACT2FN, FlaxPreTrainedModel, append_call_sample_docstring,
    overwrite_call_docstring
)
from transformers.utils import (
    add_start_docstrings, add_start_docstrings_to_model_forward, logging
)
from transformers import AutoTokenizer

from ml_collections import ConfigDict
from ml_collections.config_dict import config_dict
from mlxu import function_args_to_config, load_pickle

from EasyLM.jax_utils import with_sharding_constraint, get_jax_mesh


"""
The follow code is taken from
transformers/src/transformers/models/roberta/configuration_roberta.py
and modified to work with EasyLM.
"""


ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP = {
    "roberta-base": "https://huggingface.co/roberta-base/resolve/main/config.json",
    "roberta-large": "https://huggingface.co/roberta-large/resolve/main/config.json",
    "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/config.json",
    "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/config.json",
    "roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json",
    "roberta-large-openai-detector": "https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json",
}


class RobertaConfig(PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of a [`RobertaModel`] or a [`TFRobertaModel`]. It is
    used to instantiate a RoBERTa model according to the specified arguments, defining the model architecture.
    Instantiating a configuration with the defaults will yield a similar configuration to that of the RoBERTa
    [roberta-base](https://huggingface.co/roberta-base) architecture.
    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.
    Args:
        vocab_size (`int`, *optional*, defaults to 30522):
            Vocabulary size of the RoBERTa model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`RobertaModel`] or [`TFRobertaModel`].
        hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the encoder layers and the pooler layer.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        intermediate_size (`int`, *optional*, defaults to 3072):
            Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
        hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"silu"` and `"gelu_new"` are supported.
        hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout ratio for the attention probabilities.
        max_position_embeddings (`int`, *optional*, defaults to 512):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        type_vocab_size (`int`, *optional*, defaults to 2):
            The vocabulary size of the `token_type_ids` passed when calling [`RobertaModel`] or [`TFRobertaModel`].
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        layer_norm_eps (`float`, *optional*, defaults to 1e-12):
            The epsilon used by the layer normalization layers.
        position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
            Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
            positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
            [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
            For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
            with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models). Only
            relevant if `config.is_decoder=True`.
        classifier_dropout (`float`, *optional*):
            The dropout ratio for the classification head.
    Examples:
    ```python
    >>> from transformers import RobertaConfig, RobertaModel
    >>> # Initializing a RoBERTa configuration
    >>> configuration = RobertaConfig()
    >>> # Initializing a model (with random weights) from the configuration
    >>> model = RobertaModel(configuration)
    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```"""
    model_type = "roberta"

    def __init__(
        self,
        vocab_size=50265,
        hidden_size=768,
        num_hidden_layers=12,
        num_attention_heads=12,
        intermediate_size=3072,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=514,
        type_vocab_size=1,
        initializer_range=0.02,
        layer_norm_eps=1e-5,
        pad_token_id=1,
        bos_token_id=0,
        eos_token_id=2,
        position_embedding_type="absolute",
        use_cache=True,
        classifier_dropout=None,
        **kwargs
    ):
        super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)

        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.hidden_act = hidden_act
        self.intermediate_size = intermediate_size
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.type_vocab_size = type_vocab_size
        self.initializer_range = initializer_range
        self.layer_norm_eps = layer_norm_eps
        self.position_embedding_type = position_embedding_type
        self.use_cache = use_cache
        self.classifier_dropout = classifier_dropout

    @classmethod
    def get_default_config(cls, updates=None):
        none_arg_types = dict(
            classifier_dropout=float,
        )
        config = function_args_to_config(cls.__init__, none_arg_types=none_arg_types)
        config.tie_word_embeddings = True

        if updates is not None:
            config.update(ConfigDict(updates).copy_and_resolve_references())

        return config

    @staticmethod
    def get_jax_mesh(axis_dims):
        return get_jax_mesh(axis_dims, ('dp', 'fsdp', 'mp'))

    @staticmethod
    def get_partition_rules():
        """ Parition rules for Roberta model. """
        return (
            ('embeddings/(position_embeddings|token_type_embeddings)/embedding', PartitionSpec()),
            ('embeddings/word_embeddings/embedding', PartitionSpec()),
            ('attention/self/(key|query|value)/kernel', PartitionSpec('fsdp', 'mp')),
            ('attention/self/(key|query|value)/bias', PartitionSpec()),
            ('attention/output/dense/kernel', PartitionSpec('mp', 'fsdp')),
            ('attention/output/dense/bias', PartitionSpec()),
            ('(LayerNorm|layer_norm)/(bias|scale)', PartitionSpec()),
            ('intermediate/dense/kernel', PartitionSpec('fsdp', 'mp')),
            ('intermediate/dense/bias', PartitionSpec('mp')),
            ('output/dense/kernel', PartitionSpec('mp', 'fsdp')),
            ('output/dense/bias', PartitionSpec()),
            ('lm_head/dense/kernel', PartitionSpec()),
            ('lm_head/dense/bias', PartitionSpec()),
            ('lm_head/decoder/kernel', PartitionSpec('fsdp', 'mp')),
            ('lm_head/decoder/bias', PartitionSpec('mp')),
            ('.*', PartitionSpec()),
        )

    @staticmethod
    def get_weight_decay_exclusions():
        return ('bias', 'LayerNorm/scale', 'layer_norm/scale')

    @staticmethod
    def rng_keys():
        return ('params', 'dropout')

    @staticmethod
    def get_tokenizer_config(updates=None):
        config = ConfigDict()
        config.name = 'roberta-base'

        if updates is not None:
            config.update(ConfigDict(updates).copy_and_resolve_references())

        return config

    @classmethod
    def get_tokenizer(cls, config):
        config = cls.get_tokenizer_config(config)
        return AutoTokenizer.from_pretrained(
            config.name,
        )

    @staticmethod
    def load_pretrained(name):
        with jax.default_device(jax.devices("cpu")[0]):
            params = FlaxRobertaForMaskedLM.from_pretrained(name, _do_init=False)[1]
            params = freeze({'params': params})
        return params

    @classmethod
    def load_config(cls, path):
        load_type, load_path = path.split('::', 1)
        if load_type == 'pickle':
            return cls.from_dict(load_pickle(load_path)['roberta_config'])
        elif load_type == 'huggingface':
            return cls.from_pretrained(load_path)
        else:
            raise ValueError(f'Unsupported load config type: {load_type}')


"""
The follow code is taken from
transformers/src/transformers/models/roberta/modeling_flax_roberta.py
and modified to work with EasyLM.
"""


logger = logging.get_logger(__name__)

_CHECKPOINT_FOR_DOC = "roberta-base"
_CONFIG_FOR_DOC = "RobertaConfig"

remat = nn_partitioning.remat


def create_position_ids_from_input_ids(input_ids, padding_idx):
    """
    Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols
    are ignored. This is modified from fairseq's `utils.make_positions`.
    Args:
        input_ids: jnp.ndarray
        padding_idx: int
    Returns: jnp.ndarray
    """
    # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
    mask = (input_ids != padding_idx).astype("i4")

    if mask.ndim > 2:
        mask = mask.reshape((-1, mask.shape[-1]))
        incremental_indices = jnp.cumsum(mask, axis=1).astype("i4") * mask
        incremental_indices = incremental_indices.reshape(input_ids.shape)
    else:
        incremental_indices = jnp.cumsum(mask, axis=1).astype("i4") * mask

    return incremental_indices.astype("i4") + padding_idx


ROBERTA_START_DOCSTRING = r"""
    This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the
    library implements for all its model (such as downloading, saving and converting weights from PyTorch models)
    This model is also a Flax Linen [flax.linen.Module](https://flax.readthedocs.io/en/latest/flax.linen.html#module)
    subclass. Use it as a regular Flax linen Module and refer to the Flax documentation for all matter related to
    general usage and behavior.
    Finally, this model supports inherent JAX features such as:
    - [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit)
    - [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation)
    - [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap)
    - [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap)
    Parameters:
        config ([`RobertaConfig`]): Model configuration class with all the parameters of the
            model. Initializing with a config file does not load the weights associated with the model, only the
            configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights.
"""

ROBERTA_INPUTS_DOCSTRING = r"""
    Args:
        input_ids (`numpy.ndarray` of shape `({0})`):
            Indices of input sequence tokens in the vocabulary.
            Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
            [`PreTrainedTokenizer.__call__`] for details.
            [What are input IDs?](../glossary#input-ids)
        attention_mask (`numpy.ndarray` of shape `({0})`, *optional*):
            Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.
            [What are attention masks?](../glossary#attention-mask)
        token_type_ids (`numpy.ndarray` of shape `({0})`, *optional*):
            Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
            1]`:
            - 0 corresponds to a *sentence A* token,
            - 1 corresponds to a *sentence B* token.
            [What are token type IDs?](../glossary#token-type-ids)
        position_ids (`numpy.ndarray` of shape `({0})`, *optional*):
            Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
            config.max_position_embeddings - 1]`.
        head_mask (`numpy.ndarray` of shape `({0})`, `optional):
            Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.
        return_dict (`bool`, *optional*):
            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""


# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertEmbeddings with Bert->Roberta
class FlaxRobertaEmbeddings(nn.Module):
    """Construct the embeddings from word, position and token_type embeddings."""

    config: RobertaConfig
    dtype: jnp.dtype = jnp.float32  # the dtype of the computation

    def setup(self):
        self.word_embeddings = nn.Embed(
            self.config.vocab_size,
            self.config.hidden_size,
            embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
            dtype=self.dtype,
        )
        self.position_embeddings = nn.Embed(
            self.config.max_position_embeddings,
            self.config.hidden_size,
            embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
            dtype=self.dtype,
        )
        self.token_type_embeddings = nn.Embed(
            self.config.type_vocab_size,
            self.config.hidden_size,
            embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
            dtype=self.dtype,
        )
        self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
        self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)

    def __call__(self, input_ids, token_type_ids, position_ids, attention_mask, deterministic: bool = True):
        # Embed
        inputs_embeds = self.word_embeddings(input_ids.astype("i4"))
        position_embeds = self.position_embeddings(position_ids.astype("i4"))
        token_type_embeddings = self.token_type_embeddings(token_type_ids.astype("i4"))

        # Sum all embeddings
        hidden_states = inputs_embeds + token_type_embeddings + position_embeds

        # Layer Norm
        hidden_states = self.LayerNorm(hidden_states)
        hidden_states = self.dropout(hidden_states, deterministic=deterministic)
        return hidden_states


# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertSelfAttention with Bert->Roberta
class FlaxRobertaSelfAttention(nn.Module):
    config: RobertaConfig
    causal: bool = False
    dtype: jnp.dtype = jnp.float32  # the dtype of the computation

    def setup(self):
        self.head_dim = self.config.hidden_size // self.config.num_attention_heads
        if self.config.hidden_size % self.config.num_attention_heads != 0:
            raise ValueError(
                "`config.hidden_size`: {self.config.hidden_size} has to be a multiple of `config.num_attention_heads` "
                "                   : {self.config.num_attention_heads}"
            )

        self.query = nn.Dense(
            self.config.hidden_size,
            dtype=self.dtype,
            kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
        )
        self.key = nn.Dense(
            self.config.hidden_size,
            dtype=self.dtype,
            kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
        )
        self.value = nn.Dense(
            self.config.hidden_size,
            dtype=self.dtype,
            kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
        )

        if self.causal:
            self.causal_mask = make_causal_mask(
                jnp.ones((1, self.config.max_position_embeddings), dtype="bool"), dtype="bool"
            )

    def _split_heads(self, hidden_states):
        return hidden_states.reshape(hidden_states.shape[:2] + (self.config.num_attention_heads, self.head_dim))

    def _merge_heads(self, hidden_states):
        return hidden_states.reshape(hidden_states.shape[:2] + (self.config.hidden_size,))

    @nn.compact
    # Copied from transformers.models.bart.modeling_flax_bart.FlaxBartAttention._concatenate_to_cache
    def _concatenate_to_cache(self, key, value, query, attention_mask):
        """
        This function takes projected key, value states from a single input token and concatenates the states to cached
        states from previous steps. This function is slighly adapted from the official Flax repository:
        https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252
        """
        # detect if we're initializing by absence of existing cache data.
        is_initialized = self.has_variable("cache", "cached_key")
        cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype)
        cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype)
        cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32))

        if is_initialized:
            *batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape
            # update key, value caches with our new 1d spatial slices
            cur_index = cache_index.value
            indices = (0,) * len(batch_dims) + (cur_index, 0, 0)
            key = lax.dynamic_update_slice(cached_key.value, key, indices)
            value = lax.dynamic_update_slice(cached_value.value, value, indices)
            cached_key.value = key
            cached_value.value = value
            num_updated_cache_vectors = query.shape[1]
            cache_index.value = cache_index.value + num_updated_cache_vectors
            # causal mask for cached decoder self-attention: our single query position should only attend to those key positions that have already been generated and cached, not the remaining zero elements.
            pad_mask = jnp.broadcast_to(
                jnp.arange(max_length) < cur_index + num_updated_cache_vectors,
                tuple(batch_dims) + (1, num_updated_cache_vectors, max_length),
            )
            attention_mask = combine_masks(pad_mask, attention_mask)
        return key, value, attention_mask

    def __call__(
        self,
        hidden_states,
        attention_mask,
        layer_head_mask,
        key_value_states: Optional[jnp.array] = None,
        init_cache: bool = False,
        deterministic=True,
        output_attentions: bool = False,
    ):
        # if key_value_states are provided this layer is used as a cross-attention layer
        # for the decoder
        is_cross_attention = key_value_states is not None
        batch_size = hidden_states.shape[0]

        # get query proj
        query_states = self.query(hidden_states)
        # get key, value proj
        if is_cross_attention:
            # cross_attentions
            key_states = self.key(key_value_states)
            value_states = self.value(key_value_states)
        else:
            # self_attention
            key_states = self.key(hidden_states)
            value_states = self.value(hidden_states)

        query_states = self._split_heads(query_states)
        key_states = self._split_heads(key_states)
        value_states = self._split_heads(value_states)

        # handle cache prepare causal attention mask
        if self.causal:
            query_length, key_length = query_states.shape[1], key_states.shape[1]
            if self.has_variable("cache", "cached_key"):
                mask_shift = self.variables["cache"]["cache_index"]
                max_decoder_length = self.variables["cache"]["cached_key"].shape[1]
                causal_mask = lax.dynamic_slice(
                    self.causal_mask, (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length)
                )
            else:
                causal_mask = self.causal_mask[:, :, :query_length, :key_length]
            causal_mask = jnp.broadcast_to(causal_mask, (batch_size,) + causal_mask.shape[1:])

        # combine masks if needed
        if attention_mask is not None and self.causal:
            attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape)
            attention_mask = combine_masks(attention_mask, causal_mask)
        elif self.causal:
            attention_mask = causal_mask
        elif attention_mask is not None:
            attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2))

        # During fast autoregressive decoding, we feed one position at a time,
        # and cache the keys and values step by step.
        if self.causal and (self.has_variable("cache", "cached_key") or init_cache):
            key_states, value_states, attention_mask = self._concatenate_to_cache(
                key_states, value_states, query_states, attention_mask
            )

        # Convert the boolean attention mask to an attention bias.
        if attention_mask is not None:
            # attention mask in the form of attention bias
            attention_bias = lax.select(
                attention_mask > 0,
                jnp.full(attention_mask.shape, 0.0).astype(self.dtype),
                jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype),
            )
        else:
            attention_bias = None

        dropout_rng = None
        if not deterministic and self.config.attention_probs_dropout_prob > 0.0:
            dropout_rng = self.make_rng("dropout")

        attn_weights = dot_product_attention_weights(
            query_states,
            key_states,
            bias=attention_bias,
            dropout_rng=dropout_rng,
            dropout_rate=self.config.attention_probs_dropout_prob,
            broadcast_dropout=True,
            deterministic=deterministic,
            dtype=self.dtype,
            precision=None,
        )

        # Mask heads if we want to
        if layer_head_mask is not None:
            attn_weights = jnp.einsum("...hqk,h->...hqk", attn_weights, layer_head_mask)

        attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states)
        attn_output = attn_output.reshape(attn_output.shape[:2] + (-1,))

        outputs = (attn_output, attn_weights) if output_attentions else (attn_output,)
        return outputs


# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertSelfOutput with Bert->Roberta
class FlaxRobertaSelfOutput(nn.Module):
    config: RobertaConfig
    dtype: jnp.dtype = jnp.float32  # the dtype of the computation

    def setup(self):
        self.dense = nn.Dense(
            self.config.hidden_size,
            kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
            dtype=self.dtype,
        )
        self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
        self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)

    def __call__(self, hidden_states, input_tensor, deterministic: bool = True):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states, deterministic=deterministic)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states


# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertAttention with Bert->Roberta
class FlaxRobertaAttention(nn.Module):
    config: RobertaConfig
    causal: bool = False
    dtype: jnp.dtype = jnp.float32

    def setup(self):
        self.self = FlaxRobertaSelfAttention(self.config, causal=self.causal, dtype=self.dtype)
        self.output = FlaxRobertaSelfOutput(self.config, dtype=self.dtype)

    def __call__(
        self,
        hidden_states,
        attention_mask,
        layer_head_mask,
        key_value_states=None,
        init_cache=False,
        deterministic=True,
        output_attentions: bool = False,
    ):
        # Attention mask comes in as attention_mask.shape == (*batch_sizes, kv_length)
        # FLAX expects: attention_mask.shape == (*batch_sizes, 1, 1, kv_length) such that it is broadcastable
        # with attn_weights.shape == (*batch_sizes, num_heads, q_length, kv_length)
        attn_outputs = self.self(
            hidden_states,
            attention_mask,
            layer_head_mask=layer_head_mask,
            key_value_states=key_value_states,
            init_cache=init_cache,
            deterministic=deterministic,
            output_attentions=output_attentions,
        )
        attn_output = attn_outputs[0]
        hidden_states = self.output(attn_output, hidden_states, deterministic=deterministic)

        outputs = (hidden_states,)

        if output_attentions:
            outputs += (attn_outputs[1],)

        return outputs


# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertIntermediate with Bert->Roberta
class FlaxRobertaIntermediate(nn.Module):
    config: RobertaConfig
    dtype: jnp.dtype = jnp.float32  # the dtype of the computation

    def setup(self):
        self.dense = nn.Dense(
            self.config.intermediate_size,
            kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
            dtype=self.dtype,
        )
        self.activation = ACT2FN[self.config.hidden_act]

    def __call__(self, hidden_states):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.activation(hidden_states)
        return hidden_states


# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertOutput with Bert->Roberta
class FlaxRobertaOutput(nn.Module):
    config: RobertaConfig
    dtype: jnp.dtype = jnp.float32  # the dtype of the computation

    def setup(self):
        self.dense = nn.Dense(
            self.config.hidden_size,
            kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
            dtype=self.dtype,
        )
        self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
        self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)

    def __call__(self, hidden_states, attention_output, deterministic: bool = True):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states, deterministic=deterministic)
        hidden_states = self.LayerNorm(hidden_states + attention_output)
        return hidden_states


# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertLayer with Bert->Roberta
class FlaxRobertaLayer(nn.Module):
    config: RobertaConfig
    dtype: jnp.dtype = jnp.float32  # the dtype of the computation

    def setup(self):
        self.attention = FlaxRobertaAttention(self.config, causal=self.config.is_decoder, dtype=self.dtype)
        self.intermediate = FlaxRobertaIntermediate(self.config, dtype=self.dtype)
        self.output = FlaxRobertaOutput(self.config, dtype=self.dtype)
        if self.config.add_cross_attention:
            self.crossattention = FlaxRobertaAttention(self.config, causal=False, dtype=self.dtype)

    def __call__(
        self,
        hidden_states,
        attention_mask,
        layer_head_mask,
        encoder_hidden_states: Optional[jnp.ndarray] = None,
        encoder_attention_mask: Optional[jnp.ndarray] = None,
        init_cache: bool = False,
        deterministic: bool = True,
        output_attentions: bool = False,
    ):
        # Self Attention
        attention_outputs = self.attention(
            hidden_states,
            attention_mask,
            layer_head_mask=layer_head_mask,
            init_cache=init_cache,
            deterministic=deterministic,
            output_attentions=output_attentions,
        )
        attention_output = attention_outputs[0]

        # Cross-Attention Block
        if encoder_hidden_states is not None:
            cross_attention_outputs = self.crossattention(
                attention_output,
                attention_mask=encoder_attention_mask,
                layer_head_mask=layer_head_mask,
                key_value_states=encoder_hidden_states,
                deterministic=deterministic,
                output_attentions=output_attentions,
            )
            attention_output = cross_attention_outputs[0]

        hidden_states = self.intermediate(attention_output)
        hidden_states = self.output(hidden_states, attention_output, deterministic=deterministic)

        outputs = (hidden_states,)

        if output_attentions:
            outputs += (attention_outputs[1],)
            if encoder_hidden_states is not None:
                outputs += (cross_attention_outputs[1],)
        return outputs


# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertLayerCollection with Bert->Roberta
class FlaxRobertaLayerCollection(nn.Module):
    config: RobertaConfig
    dtype: jnp.dtype = jnp.float32  # the dtype of the computation
    gradient_checkpointing: bool = False

    def setup(self):
        if self.gradient_checkpointing:
            FlaxRobertaCheckpointLayer = remat(FlaxRobertaLayer, static_argnums=(5, 6, 7))
            self.layers = [
                FlaxRobertaCheckpointLayer(self.config, name=str(i), dtype=self.dtype)
                for i in range(self.config.num_hidden_layers)
            ]
        else:
            self.layers = [
                FlaxRobertaLayer(self.config, name=str(i), dtype=self.dtype)
                for i in range(self.config.num_hidden_layers)
            ]

    def __call__(
        self,
        hidden_states,
        attention_mask,
        head_mask,
        encoder_hidden_states: Optional[jnp.ndarray] = None,
        encoder_attention_mask: Optional[jnp.ndarray] = None,
        init_cache: bool = False,
        deterministic: bool = True,
        output_attentions: bool = False,
        output_hidden_states: bool = False,
        return_dict: bool = True,
    ):
        all_attentions = () if output_attentions else None
        all_hidden_states = () if output_hidden_states else None
        all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None

        # Check if head_mask has a correct number of layers specified if desired
        if head_mask is not None:
            if head_mask.shape[0] != (len(self.layers)):
                raise ValueError(
                    f"The head_mask should be specified for {len(self.layers)} layers, but it is for                  "
                    f"       {head_mask.shape[0]}."
                )

        for i, layer in enumerate(self.layers):
            if output_hidden_states:
                all_hidden_states += (hidden_states,)

            layer_outputs = layer(
                hidden_states,
                attention_mask,
                head_mask[i] if head_mask is not None else None,
                encoder_hidden_states,
                encoder_attention_mask,
                init_cache,
                deterministic,
                output_attentions,
            )

            hidden_states = layer_outputs[0]

            if output_attentions:
                all_attentions += (layer_outputs[1],)

                if encoder_hidden_states is not None:
                    all_cross_attentions += (layer_outputs[2],)

        if output_hidden_states:
            all_hidden_states += (hidden_states,)

        outputs = (hidden_states, all_hidden_states, all_attentions, all_cross_attentions)

        if not return_dict:
            return tuple(v for v in outputs if v is not None)

        return FlaxBaseModelOutputWithPastAndCrossAttentions(
            last_hidden_state=hidden_states,
            hidden_states=all_hidden_states,
            attentions=all_attentions,
            cross_attentions=all_cross_attentions,
        )


# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertEncoder with Bert->Roberta
class FlaxRobertaEncoder(nn.Module):
    config: RobertaConfig
    dtype: jnp.dtype = jnp.float32  # the dtype of the computation
    gradient_checkpointing: bool = False

    def setup(self):
        self.layer = FlaxRobertaLayerCollection(
            self.config,
            dtype=self.dtype,
            gradient_checkpointing=self.gradient_checkpointing,
        )

    def __call__(
        self,
        hidden_states,
        attention_mask,
        head_mask,
        encoder_hidden_states: Optional[jnp.ndarray] = None,
        encoder_attention_mask: Optional[jnp.ndarray] = None,
        init_cache: bool = False,
        deterministic: bool = True,
        output_attentions: bool = False,
        output_hidden_states: bool = False,
        return_dict: bool = True,
    ):
        return self.layer(
            hidden_states,
            attention_mask,
            head_mask=head_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            init_cache=init_cache,
            deterministic=deterministic,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )


# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertPooler with Bert->Roberta
class FlaxRobertaPooler(nn.Module):
    config: RobertaConfig
    dtype: jnp.dtype = jnp.float32  # the dtype of the computation

    def setup(self):
        self.dense = nn.Dense(
            self.config.hidden_size,
            kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
            dtype=self.dtype,
        )

    def __call__(self, hidden_states):
        cls_hidden_state = hidden_states[:, 0]
        cls_hidden_state = self.dense(cls_hidden_state)
        return nn.tanh(cls_hidden_state)


class FlaxRobertaLMHead(nn.Module):
    config: RobertaConfig
    dtype: jnp.dtype = jnp.float32
    bias_init: Callable[..., np.ndarray] = jax.nn.initializers.zeros

    def setup(self):
        self.dense = nn.Dense(
            self.config.hidden_size,
            dtype=self.dtype,
            kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
        )
        self.layer_norm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
        self.decoder = nn.Dense(
            self.config.vocab_size,
            dtype=self.dtype,
            use_bias=False,
            kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
        )
        self.bias = self.param("bias", self.bias_init, (self.config.vocab_size,))

    def __call__(self, hidden_states, shared_embedding=None):
        hidden_states = self.dense(hidden_states)
        hidden_states = ACT2FN["gelu"](hidden_states)
        hidden_states = self.layer_norm(hidden_states)

        if shared_embedding is not None:
            hidden_states = self.decoder.apply({"params": {"kernel": shared_embedding.T}}, hidden_states)
        else:
            hidden_states = self.decoder(hidden_states)

        bias = jnp.asarray(self.bias, self.dtype)
        hidden_states += bias
        return hidden_states


class FlaxRobertaClassificationHead(nn.Module):
    config: RobertaConfig
    dtype: jnp.dtype = jnp.float32

    def setup(self):
        self.dense = nn.Dense(
            self.config.hidden_size,
            dtype=self.dtype,
            kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
        )
        classifier_dropout = (
            self.config.classifier_dropout
            if self.config.classifier_dropout is not None
            else self.config.hidden_dropout_prob
        )
        self.dropout = nn.Dropout(rate=classifier_dropout)
        self.out_proj = nn.Dense(
            self.config.num_labels,
            dtype=self.dtype,
            kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
        )

    def __call__(self, hidden_states, deterministic=True):
        hidden_states = hidden_states[:, 0, :]  # take <s> token (equiv. to [CLS])
        hidden_states = self.dropout(hidden_states, deterministic=deterministic)
        hidden_states = self.dense(hidden_states)
        hidden_states = nn.tanh(hidden_states)
        hidden_states = self.dropout(hidden_states, deterministic=deterministic)
        hidden_states = self.out_proj(hidden_states)
        return hidden_states


class FlaxRobertaPreTrainedModel(FlaxPreTrainedModel):
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
    """

    config_class = RobertaConfig
    base_model_prefix = "roberta"

    module_class: nn.Module = None

    def __init__(
        self,
        config: RobertaConfig,
        input_shape: Tuple = (1, 1),
        seed: int = 0,
        dtype: jnp.dtype = jnp.float32,
        _do_init: bool = True,
        gradient_checkpointing: bool = False,
        **kwargs,
    ):
        module = self.module_class(config=config, dtype=dtype, gradient_checkpointing=gradient_checkpointing, **kwargs)
        super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init)

    # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertPreTrainedModel.enable_gradient_checkpointing
    def enable_gradient_checkpointing(self):
        self._module = self.module_class(
            config=self.config,
            dtype=self.dtype,
            gradient_checkpointing=True,
        )

    def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict:
        # init input tensors
        input_ids = jnp.zeros(input_shape, dtype="i4")
        token_type_ids = jnp.ones_like(input_ids)
        position_ids = create_position_ids_from_input_ids(input_ids, self.config.pad_token_id)
        attention_mask = jnp.ones_like(input_ids)
        head_mask = jnp.ones((self.config.num_hidden_layers, self.config.num_attention_heads))

        params_rng, dropout_rng = jax.random.split(rng)
        rngs = {"params": params_rng, "dropout": dropout_rng}

        if self.config.add_cross_attention:
            encoder_hidden_states = jnp.zeros(input_shape + (self.config.hidden_size,))
            encoder_attention_mask = attention_mask
            module_init_outputs = self.module.init(
                rngs,
                input_ids,
                attention_mask,
                token_type_ids,
                position_ids,
                head_mask,
                encoder_hidden_states,
                encoder_attention_mask,
                return_dict=False,
            )
        else:
            module_init_outputs = self.module.init(
                rngs, input_ids, attention_mask, token_type_ids, position_ids, head_mask, return_dict=False
            )

        random_params = module_init_outputs["params"]

        if params is not None:
            random_params = flatten_dict(unfreeze(random_params))
            params = flatten_dict(unfreeze(params))
            for missing_key in self._missing_keys:
                params[missing_key] = random_params[missing_key]
            self._missing_keys = set()
            return freeze(unflatten_dict(params))
        else:
            return random_params

    # Copied from transformers.models.bart.modeling_flax_bart.FlaxBartDecoderPreTrainedModel.init_cache
    def init_cache(self, batch_size, max_length):
        r"""
        Args:
            batch_size (`int`):
                batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache.
            max_length (`int`):
                maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized
                cache.
        """
        # init input variables to retrieve cache
        input_ids = jnp.ones((batch_size, max_length), dtype="i4")
        attention_mask = jnp.ones_like(input_ids, dtype="i4")
        position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape)

        init_variables = self.module.init(
            jax.random.PRNGKey(0), input_ids, attention_mask, position_ids, return_dict=False, init_cache=True
        )
        return unfreeze(init_variables["cache"])

    @add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
    def __call__(
        self,
        input_ids,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
        params: dict = None,
        dropout_rng: jax.random.PRNGKey = None,
        train: bool = False,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        past_key_values: dict = None,
    ):
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.return_dict

        # init input tensors if not passed
        if token_type_ids is None:
            token_type_ids = jnp.zeros_like(input_ids)

        if position_ids is None:
            position_ids = create_position_ids_from_input_ids(input_ids, self.config.pad_token_id)

        if attention_mask is None:
            attention_mask = jnp.ones_like(input_ids)

        if head_mask is None:
            head_mask = jnp.ones((self.config.num_hidden_layers, self.config.num_attention_heads))

        # Handle any PRNG if needed
        rngs = {}
        if dropout_rng is not None:
            rngs["dropout"] = dropout_rng

        inputs = {"params": params or self.params}

        if self.config.add_cross_attention:
            # if past_key_values are passed then cache is already initialized a private flag init_cache has to be passed
            # down to ensure cache is used. It has to be made sure that cache is marked as mutable so that it can be
            # changed by FlaxRobertaAttention module
            if past_key_values:
                inputs["cache"] = past_key_values
                mutable = ["cache"]
            else:
                mutable = False

            outputs = self.module.apply(
                inputs,
                jnp.array(input_ids, dtype="i4"),
                jnp.array(attention_mask, dtype="i4"),
                token_type_ids=jnp.array(token_type_ids, dtype="i4"),
                position_ids=jnp.array(position_ids, dtype="i4"),
                head_mask=jnp.array(head_mask, dtype="i4"),
                encoder_hidden_states=encoder_hidden_states,
                encoder_attention_mask=encoder_attention_mask,
                deterministic=not train,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict=return_dict,
                rngs=rngs,
                mutable=mutable,
            )

            # add updated cache to model output
            if past_key_values is not None and return_dict:
                outputs, past_key_values = outputs
                outputs["past_key_values"] = unfreeze(past_key_values["cache"])
                return outputs
            elif past_key_values is not None and not return_dict:
                outputs, past_key_values = outputs
                outputs = outputs[:1] + (unfreeze(past_key_values["cache"]),) + outputs[1:]

        else:
            outputs = self.module.apply(
                inputs,
                jnp.array(input_ids, dtype="i4"),
                jnp.array(attention_mask, dtype="i4"),
                token_type_ids=jnp.array(token_type_ids, dtype="i4"),
                position_ids=jnp.array(position_ids, dtype="i4"),
                head_mask=jnp.array(head_mask, dtype="i4"),
                deterministic=not train,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict=return_dict,
                rngs=rngs,
            )

        return outputs


# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertModule with Bert->Roberta
class FlaxRobertaModule(nn.Module):
    config: RobertaConfig
    dtype: jnp.dtype = jnp.float32  # the dtype of the computation
    add_pooling_layer: bool = True
    gradient_checkpointing: bool = False

    def setup(self):
        self.embeddings = FlaxRobertaEmbeddings(self.config, dtype=self.dtype)
        self.encoder = FlaxRobertaEncoder(
            self.config,
            dtype=self.dtype,
            gradient_checkpointing=self.gradient_checkpointing,
        )
        self.pooler = FlaxRobertaPooler(self.config, dtype=self.dtype)

    def __call__(
        self,
        input_ids,
        attention_mask,
        token_type_ids: Optional[jnp.ndarray] = None,
        position_ids: Optional[jnp.ndarray] = None,
        head_mask: Optional[jnp.ndarray] = None,
        encoder_hidden_states: Optional[jnp.ndarray] = None,
        encoder_attention_mask: Optional[jnp.ndarray] = None,
        init_cache: bool = False,
        deterministic: bool = True,
        output_attentions: bool = False,
        output_hidden_states: bool = False,
        return_dict: bool = True,
    ):
        # make sure `token_type_ids` is correctly initialized when not passed
        if token_type_ids is None:
            token_type_ids = jnp.zeros_like(input_ids)

        # make sure `position_ids` is correctly initialized when not passed
        if position_ids is None:
            position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape)

        hidden_states = self.embeddings(
            input_ids, token_type_ids, position_ids, attention_mask, deterministic=deterministic
        )
        outputs = self.encoder(
            hidden_states,
            attention_mask,
            head_mask=head_mask,
            deterministic=deterministic,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            init_cache=init_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        hidden_states = outputs[0]
        pooled = self.pooler(hidden_states) if self.add_pooling_layer else None

        if not return_dict:
            # if pooled is None, don't return it
            if pooled is None:
                return (hidden_states,) + outputs[1:]
            return (hidden_states, pooled) + outputs[1:]

        return FlaxBaseModelOutputWithPoolingAndCrossAttentions(
            last_hidden_state=hidden_states,
            pooler_output=pooled,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
            cross_attentions=outputs.cross_attentions,
        )


@add_start_docstrings(
    "The bare RoBERTa Model transformer outputting raw hidden-states without any specific head on top.",
    ROBERTA_START_DOCSTRING,
)
class FlaxRobertaModel(FlaxRobertaPreTrainedModel):
    module_class = FlaxRobertaModule


append_call_sample_docstring(FlaxRobertaModel, _CHECKPOINT_FOR_DOC, FlaxBaseModelOutputWithPooling, _CONFIG_FOR_DOC)


class FlaxRobertaForMaskedLMModule(nn.Module):
    config: RobertaConfig
    dtype: jnp.dtype = jnp.float32
    gradient_checkpointing: bool = False

    def setup(self):
        self.roberta = FlaxRobertaModule(
            config=self.config,
            add_pooling_layer=False,
            dtype=self.dtype,
            gradient_checkpointing=self.gradient_checkpointing,
        )
        self.lm_head = FlaxRobertaLMHead(config=self.config, dtype=self.dtype)

    def __call__(
        self,
        input_ids,
        attention_mask,
        token_type_ids,
        position_ids,
        head_mask,
        deterministic: bool = True,
        output_attentions: bool = False,
        output_hidden_states: bool = False,
        return_dict: bool = True,
    ):
        # Model
        outputs = self.roberta(
            input_ids,
            attention_mask,
            token_type_ids,
            position_ids,
            head_mask,
            deterministic=deterministic,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        hidden_states = outputs[0]
        if self.config.tie_word_embeddings:
            shared_embedding = self.roberta.variables["params"]["embeddings"]["word_embeddings"]["embedding"]
        else:
            shared_embedding = None

        # Compute the prediction scores
        logits = self.lm_head(hidden_states, shared_embedding=shared_embedding)

        if not return_dict:
            return (logits,) + outputs[1:]

        return FlaxMaskedLMOutput(
            logits=logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )


@add_start_docstrings("""RoBERTa Model with a `language modeling` head on top.""", ROBERTA_START_DOCSTRING)
class FlaxRobertaForMaskedLM(FlaxRobertaPreTrainedModel):
    module_class = FlaxRobertaForMaskedLMModule


append_call_sample_docstring(
    FlaxRobertaForMaskedLM,
    _CHECKPOINT_FOR_DOC,
    FlaxBaseModelOutputWithPooling,
    _CONFIG_FOR_DOC,
    mask="<mask>",
)


class FlaxRobertaForSequenceClassificationModule(nn.Module):
    config: RobertaConfig
    dtype: jnp.dtype = jnp.float32
    gradient_checkpointing: bool = False

    def setup(self):
        self.roberta = FlaxRobertaModule(
            config=self.config,
            dtype=self.dtype,
            add_pooling_layer=False,
            gradient_checkpointing=self.gradient_checkpointing,
        )
        self.classifier = FlaxRobertaClassificationHead(config=self.config, dtype=self.dtype)

    def __call__(
        self,
        input_ids,
        attention_mask,
        token_type_ids,
        position_ids,
        head_mask,
        deterministic: bool = True,
        output_attentions: bool = False,
        output_hidden_states: bool = False,
        return_dict: bool = True,
    ):
        # Model
        outputs = self.roberta(
            input_ids,
            attention_mask,
            token_type_ids,
            position_ids,
            head_mask,
            deterministic=deterministic,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        sequence_output = outputs[0]
        logits = self.classifier(sequence_output, deterministic=deterministic)

        if not return_dict:
            return (logits,) + outputs[1:]

        return FlaxSequenceClassifierOutput(
            logits=logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )


@add_start_docstrings(
    """
    Roberta Model transformer with a sequence classification/regression head on top (a linear layer on top of the
    pooled output) e.g. for GLUE tasks.
    """,
    ROBERTA_START_DOCSTRING,
)
class FlaxRobertaForSequenceClassification(FlaxRobertaPreTrainedModel):
    module_class = FlaxRobertaForSequenceClassificationModule


append_call_sample_docstring(
    FlaxRobertaForSequenceClassification,
    _CHECKPOINT_FOR_DOC,
    FlaxSequenceClassifierOutput,
    _CONFIG_FOR_DOC,
)


# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertForMultipleChoiceModule with Bert->Roberta, with self.bert->self.roberta
class FlaxRobertaForMultipleChoiceModule(nn.Module):
    config: RobertaConfig
    dtype: jnp.dtype = jnp.float32
    gradient_checkpointing: bool = False

    def setup(self):
        self.roberta = FlaxRobertaModule(
            config=self.config,
            dtype=self.dtype,
            gradient_checkpointing=self.gradient_checkpointing,
        )
        self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
        self.classifier = nn.Dense(1, dtype=self.dtype)

    def __call__(
        self,
        input_ids,
        attention_mask,
        token_type_ids,
        position_ids,
        head_mask,
        deterministic: bool = True,
        output_attentions: bool = False,
        output_hidden_states: bool = False,
        return_dict: bool = True,
    ):
        num_choices = input_ids.shape[1]
        input_ids = input_ids.reshape(-1, input_ids.shape[-1]) if input_ids is not None else None
        attention_mask = attention_mask.reshape(-1, attention_mask.shape[-1]) if attention_mask is not None else None
        token_type_ids = token_type_ids.reshape(-1, token_type_ids.shape[-1]) if token_type_ids is not None else None
        position_ids = position_ids.reshape(-1, position_ids.shape[-1]) if position_ids is not None else None

        # Model
        outputs = self.roberta(
            input_ids,
            attention_mask,
            token_type_ids,
            position_ids,
            head_mask,
            deterministic=deterministic,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        pooled_output = outputs[1]
        pooled_output = self.dropout(pooled_output, deterministic=deterministic)
        logits = self.classifier(pooled_output)

        reshaped_logits = logits.reshape(-1, num_choices)

        if not return_dict:
            return (reshaped_logits,) + outputs[2:]

        return FlaxMultipleChoiceModelOutput(
            logits=reshaped_logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )


@add_start_docstrings(
    """
    Roberta Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
    softmax) e.g. for RocStories/SWAG tasks.
    """,
    ROBERTA_START_DOCSTRING,
)
class FlaxRobertaForMultipleChoice(FlaxRobertaPreTrainedModel):
    module_class = FlaxRobertaForMultipleChoiceModule


overwrite_call_docstring(
    FlaxRobertaForMultipleChoice, ROBERTA_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")
)
append_call_sample_docstring(
    FlaxRobertaForMultipleChoice,
    _CHECKPOINT_FOR_DOC,
    FlaxMultipleChoiceModelOutput,
    _CONFIG_FOR_DOC,
)


# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertForTokenClassificationModule with Bert->Roberta, with self.bert->self.roberta
class FlaxRobertaForTokenClassificationModule(nn.Module):
    config: RobertaConfig
    dtype: jnp.dtype = jnp.float32
    gradient_checkpointing: bool = False

    def setup(self):
        self.roberta = FlaxRobertaModule(
            config=self.config,
            dtype=self.dtype,
            add_pooling_layer=False,
            gradient_checkpointing=self.gradient_checkpointing,
        )
        classifier_dropout = (
            self.config.classifier_dropout
            if self.config.classifier_dropout is not None
            else self.config.hidden_dropout_prob
        )
        self.dropout = nn.Dropout(rate=classifier_dropout)
        self.classifier = nn.Dense(self.config.num_labels, dtype=self.dtype)

    def __call__(
        self,
        input_ids,
        attention_mask,
        token_type_ids,
        position_ids,
        head_mask,
        deterministic: bool = True,
        output_attentions: bool = False,
        output_hidden_states: bool = False,
        return_dict: bool = True,
    ):
        # Model
        outputs = self.roberta(
            input_ids,
            attention_mask,
            token_type_ids,
            position_ids,
            head_mask,
            deterministic=deterministic,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        hidden_states = outputs[0]
        hidden_states = self.dropout(hidden_states, deterministic=deterministic)
        logits = self.classifier(hidden_states)

        if not return_dict:
            return (logits,) + outputs[1:]

        return FlaxTokenClassifierOutput(
            logits=logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )


@add_start_docstrings(
    """
    Roberta Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
    Named-Entity-Recognition (NER) tasks.
    """,
    ROBERTA_START_DOCSTRING,
)
class FlaxRobertaForTokenClassification(FlaxRobertaPreTrainedModel):
    module_class = FlaxRobertaForTokenClassificationModule


append_call_sample_docstring(
    FlaxRobertaForTokenClassification,
    _CHECKPOINT_FOR_DOC,
    FlaxTokenClassifierOutput,
    _CONFIG_FOR_DOC,
)


# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertForQuestionAnsweringModule with Bert->Roberta, with self.bert->self.roberta
class FlaxRobertaForQuestionAnsweringModule(nn.Module):
    config: RobertaConfig
    dtype: jnp.dtype = jnp.float32
    gradient_checkpointing: bool = False

    def setup(self):
        self.roberta = FlaxRobertaModule(
            config=self.config,
            dtype=self.dtype,
            add_pooling_layer=False,
            gradient_checkpointing=self.gradient_checkpointing,
        )
        self.qa_outputs = nn.Dense(self.config.num_labels, dtype=self.dtype)

    def __call__(
        self,
        input_ids,
        attention_mask,
        token_type_ids,
        position_ids,
        head_mask,
        deterministic: bool = True,
        output_attentions: bool = False,
        output_hidden_states: bool = False,
        return_dict: bool = True,
    ):
        # Model
        outputs = self.roberta(
            input_ids,
            attention_mask,
            token_type_ids,
            position_ids,
            head_mask,
            deterministic=deterministic,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        hidden_states = outputs[0]

        logits = self.qa_outputs(hidden_states)
        start_logits, end_logits = logits.split(self.config.num_labels, axis=-1)
        start_logits = start_logits.squeeze(-1)
        end_logits = end_logits.squeeze(-1)

        if not return_dict:
            return (start_logits, end_logits) + outputs[1:]

        return FlaxQuestionAnsweringModelOutput(
            start_logits=start_logits,
            end_logits=end_logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )


@add_start_docstrings(
    """
    Roberta Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
    layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
    """,
    ROBERTA_START_DOCSTRING,
)
class FlaxRobertaForQuestionAnswering(FlaxRobertaPreTrainedModel):
    module_class = FlaxRobertaForQuestionAnsweringModule


append_call_sample_docstring(
    FlaxRobertaForQuestionAnswering,
    _CHECKPOINT_FOR_DOC,
    FlaxQuestionAnsweringModelOutput,
    _CONFIG_FOR_DOC,
)


class FlaxRobertaForCausalLMModule(nn.Module):
    config: RobertaConfig
    dtype: jnp.dtype = jnp.float32
    gradient_checkpointing: bool = False

    def setup(self):
        self.roberta = FlaxRobertaModule(
            config=self.config,
            add_pooling_layer=False,
            dtype=self.dtype,
            gradient_checkpointing=self.gradient_checkpointing,
        )
        self.lm_head = FlaxRobertaLMHead(config=self.config, dtype=self.dtype)

    def __call__(
        self,
        input_ids,
        attention_mask,
        position_ids,
        token_type_ids: Optional[jnp.ndarray] = None,
        head_mask: Optional[jnp.ndarray] = None,
        encoder_hidden_states: Optional[jnp.ndarray] = None,
        encoder_attention_mask: Optional[jnp.ndarray] = None,
        init_cache: bool = False,
        deterministic: bool = True,
        output_attentions: bool = False,
        output_hidden_states: bool = False,
        return_dict: bool = True,
    ):
        # Model
        outputs = self.roberta(
            input_ids,
            attention_mask,
            token_type_ids,
            position_ids,
            head_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            init_cache=init_cache,
            deterministic=deterministic,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        hidden_states = outputs[0]
        if self.config.tie_word_embeddings:
            shared_embedding = self.roberta.variables["params"]["embeddings"]["word_embeddings"]["embedding"]
        else:
            shared_embedding = None

        # Compute the prediction scores
        logits = self.lm_head(hidden_states, shared_embedding=shared_embedding)

        if not return_dict:
            return (logits,) + outputs[1:]

        return FlaxCausalLMOutputWithCrossAttentions(
            logits=logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
            cross_attentions=outputs.cross_attentions,
        )


@add_start_docstrings(
    """
    Roberta Model with a language modeling head on top (a linear layer on top of the hidden-states output) e.g for
    autoregressive tasks.
    """,
    ROBERTA_START_DOCSTRING,
)
class FlaxRobertaForCausalLM(FlaxRobertaPreTrainedModel):
    module_class = FlaxRobertaForCausalLMModule

    def prepare_inputs_for_generation(self, input_ids, max_length, attention_mask: Optional[jnp.DeviceArray] = None):
        # initializing the cache
        batch_size, seq_length = input_ids.shape

        past_key_values = self.init_cache(batch_size, max_length)
        # Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length.
        # But since the decoder uses a causal mask, those positions are masked anyway.
        # Thus, we can create a single static attention_mask here, which is more efficient for compilation
        extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4")
        if attention_mask is not None:
            position_ids = attention_mask.cumsum(axis=-1) - 1
            extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, attention_mask, (0, 0))
        else:
            position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length))

        return {
            "past_key_values": past_key_values,
            "attention_mask": extended_attention_mask,
            "position_ids": position_ids,
        }

    def update_inputs_for_generation(self, model_outputs, model_kwargs):
        model_kwargs["past_key_values"] = model_outputs.past_key_values
        model_kwargs["position_ids"] = model_kwargs["position_ids"][:, -1:] + 1
        return model_kwargs


append_call_sample_docstring(
    FlaxRobertaForCausalLM,
    _CHECKPOINT_FOR_DOC,
    FlaxCausalLMOutputWithCrossAttentions,
    _CONFIG_FOR_DOC,
)