from transformers import AutoModelForSeq2SeqLM, FlaxAutoModelForSeq2SeqLM, AutoTokenizer
import torch
import numpy as np
import jax
import jax.numpy as jnp

def to_f32(t):
    return jax.tree_map(lambda x: x.astype(jnp.float32) if x.dtype == jnp.bfloat16 else x, t)

jax.config.update('jax_platform_name', 'cpu')
MODEL_PATH = "./"
model = FlaxAutoModelForSeq2SeqLM.from_pretrained(MODEL_PATH)
model.params = to_f32(model.params)
model.save_pretrained(MODEL_PATH)

pt_model = AutoModelForSeq2SeqLM.from_pretrained(
    MODEL_PATH, from_flax=True).to('cpu')

input_ids = np.asarray(2 * [128 * [0]], dtype=np.int32)
input_ids_pt = torch.tensor(input_ids)

logits_pt = pt_model(input_ids=input_ids_pt, decoder_input_ids=input_ids_pt).logits
print(logits_pt)
logits_fx = model(input_ids=input_ids, decoder_input_ids=input_ids).logits
print(logits_fx)

pt_model.save_pretrained(MODEL_PATH)