aapot
commited on
Commit
•
7460603
1
Parent(s):
5d1d3e2
Add 50k train step model
Browse files- config.gin +148 -0
- config.json +2 -2
- convert_t5x_checkpoint_to_flax.py +51 -46
- flax_model.msgpack +3 -0
- model-info.txt +148 -0
- pytorch_model.bin +3 -0
- train/events.out.tfevents.1661710468.t1v-n-12f94ad0-w-0.60675.0.v2 +3 -0
- training_eval/pretrain_finnish/events.out.tfevents.1661710468.t1v-n-12f94ad0-w-0.60675.1.v2 +3 -0
config.gin
ADDED
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __gin__ import dynamic_registration
|
2 |
+
import __main__ as train_script
|
3 |
+
import seqio
|
4 |
+
from t5x import adafactor
|
5 |
+
from t5x.examples.scalable_t5 import network
|
6 |
+
from t5x import gin_utils
|
7 |
+
from t5x import models
|
8 |
+
from t5x import partitioning
|
9 |
+
from t5x import trainer
|
10 |
+
from t5x import utils
|
11 |
+
import tasks
|
12 |
+
|
13 |
+
# Macros:
|
14 |
+
# ==============================================================================
|
15 |
+
BATCH_SIZE = 256
|
16 |
+
DROPOUT_RATE = 0.0
|
17 |
+
LABEL_SMOOTHING = 0.0
|
18 |
+
LOSS_NORMALIZING_FACTOR = None
|
19 |
+
MIXTURE_OR_TASK_MODULE = None
|
20 |
+
MIXTURE_OR_TASK_NAME = 'pretrain_finnish'
|
21 |
+
MODEL = @models.EncoderDecoderModel()
|
22 |
+
MODEL_DIR = '/researchdisk/t5-small-nl16-finnish'
|
23 |
+
OPTIMIZER = @adafactor.Adafactor()
|
24 |
+
RANDOM_SEED = None
|
25 |
+
SHUFFLE_TRAIN_EXAMPLES = True
|
26 |
+
TASK_FEATURE_LENGTHS = {'inputs': 512, 'targets': 512}
|
27 |
+
TRAIN_STEPS = 500000
|
28 |
+
USE_CACHED_TASKS = False
|
29 |
+
USE_HARDWARE_RNG = False
|
30 |
+
VOCABULARY = @seqio.SentencePieceVocabulary()
|
31 |
+
Z_LOSS = 0.0001
|
32 |
+
|
33 |
+
# Parameters for adafactor.Adafactor:
|
34 |
+
# ==============================================================================
|
35 |
+
adafactor.Adafactor.decay_rate = 0.8
|
36 |
+
adafactor.Adafactor.logical_factor_rules = \
|
37 |
+
@adafactor.standard_logical_factor_rules()
|
38 |
+
adafactor.Adafactor.step_offset = 0
|
39 |
+
|
40 |
+
# Parameters for utils.CheckpointConfig:
|
41 |
+
# ==============================================================================
|
42 |
+
utils.CheckpointConfig.restore = @utils.RestoreCheckpointConfig()
|
43 |
+
utils.CheckpointConfig.save = @utils.SaveCheckpointConfig()
|
44 |
+
|
45 |
+
# Parameters for utils.create_learning_rate_scheduler:
|
46 |
+
# ==============================================================================
|
47 |
+
utils.create_learning_rate_scheduler.base_learning_rate = 1.0
|
48 |
+
utils.create_learning_rate_scheduler.factors = 'constant * rsqrt_decay'
|
49 |
+
utils.create_learning_rate_scheduler.warmup_steps = 10000
|
50 |
+
|
51 |
+
# Parameters for train/utils.DatasetConfig:
|
52 |
+
# ==============================================================================
|
53 |
+
train/utils.DatasetConfig.batch_size = %BATCH_SIZE
|
54 |
+
train/utils.DatasetConfig.mixture_or_task_name = %MIXTURE_OR_TASK_NAME
|
55 |
+
train/utils.DatasetConfig.module = %MIXTURE_OR_TASK_MODULE
|
56 |
+
train/utils.DatasetConfig.pack = True
|
57 |
+
train/utils.DatasetConfig.seed = None
|
58 |
+
train/utils.DatasetConfig.shuffle = %SHUFFLE_TRAIN_EXAMPLES
|
59 |
+
train/utils.DatasetConfig.split = 'train'
|
60 |
+
train/utils.DatasetConfig.task_feature_lengths = %TASK_FEATURE_LENGTHS
|
61 |
+
train/utils.DatasetConfig.use_cached = %USE_CACHED_TASKS
|
62 |
+
|
63 |
+
# Parameters for train_eval/utils.DatasetConfig:
|
64 |
+
# ==============================================================================
|
65 |
+
train_eval/utils.DatasetConfig.batch_size = %BATCH_SIZE
|
66 |
+
train_eval/utils.DatasetConfig.mixture_or_task_name = %MIXTURE_OR_TASK_NAME
|
67 |
+
train_eval/utils.DatasetConfig.module = %MIXTURE_OR_TASK_MODULE
|
68 |
+
train_eval/utils.DatasetConfig.pack = True
|
69 |
+
train_eval/utils.DatasetConfig.seed = 42
|
70 |
+
train_eval/utils.DatasetConfig.shuffle = False
|
71 |
+
train_eval/utils.DatasetConfig.split = 'validation'
|
72 |
+
train_eval/utils.DatasetConfig.task_feature_lengths = %TASK_FEATURE_LENGTHS
|
73 |
+
train_eval/utils.DatasetConfig.use_cached = %USE_CACHED_TASKS
|
74 |
+
|
75 |
+
# Parameters for models.EncoderDecoderModel:
|
76 |
+
# ==============================================================================
|
77 |
+
models.EncoderDecoderModel.input_vocabulary = %VOCABULARY
|
78 |
+
models.EncoderDecoderModel.label_smoothing = %LABEL_SMOOTHING
|
79 |
+
models.EncoderDecoderModel.loss_normalizing_factor = %LOSS_NORMALIZING_FACTOR
|
80 |
+
models.EncoderDecoderModel.module = @network.Transformer()
|
81 |
+
models.EncoderDecoderModel.optimizer_def = %OPTIMIZER
|
82 |
+
models.EncoderDecoderModel.output_vocabulary = %VOCABULARY
|
83 |
+
models.EncoderDecoderModel.z_loss = %Z_LOSS
|
84 |
+
|
85 |
+
# Parameters for partitioning.PjitPartitioner:
|
86 |
+
# ==============================================================================
|
87 |
+
partitioning.PjitPartitioner.logical_axis_rules = \
|
88 |
+
@partitioning.standard_logical_axis_rules()
|
89 |
+
partitioning.PjitPartitioner.model_parallel_submesh = None
|
90 |
+
partitioning.PjitPartitioner.num_partitions = 1
|
91 |
+
|
92 |
+
# Parameters for utils.RestoreCheckpointConfig:
|
93 |
+
# ==============================================================================
|
94 |
+
utils.RestoreCheckpointConfig.path = []
|
95 |
+
|
96 |
+
# Parameters for utils.SaveCheckpointConfig:
|
97 |
+
# ==============================================================================
|
98 |
+
utils.SaveCheckpointConfig.dtype = 'float32'
|
99 |
+
utils.SaveCheckpointConfig.keep = 10
|
100 |
+
utils.SaveCheckpointConfig.period = 10000
|
101 |
+
utils.SaveCheckpointConfig.save_dataset = False
|
102 |
+
|
103 |
+
# Parameters for seqio.SentencePieceVocabulary:
|
104 |
+
# ==============================================================================
|
105 |
+
seqio.SentencePieceVocabulary.sentencepiece_model_file = 'spiece.model'
|
106 |
+
|
107 |
+
# Parameters for network.T5Config:
|
108 |
+
# ==============================================================================
|
109 |
+
network.T5Config.dropout_rate = %DROPOUT_RATE
|
110 |
+
network.T5Config.dtype = 'bfloat16'
|
111 |
+
network.T5Config.emb_dim = 512
|
112 |
+
network.T5Config.head_dim = 64
|
113 |
+
network.T5Config.logits_via_embedding = False
|
114 |
+
network.T5Config.mlp_activations = ('gelu', 'linear')
|
115 |
+
network.T5Config.mlp_dim = 2048
|
116 |
+
network.T5Config.num_decoder_layers = 16
|
117 |
+
network.T5Config.num_encoder_layers = 16
|
118 |
+
network.T5Config.num_heads = 8
|
119 |
+
network.T5Config.remat_policy = 'minimal'
|
120 |
+
network.T5Config.scan_layers = True
|
121 |
+
network.T5Config.vocab_size = 32128
|
122 |
+
|
123 |
+
# Parameters for train_script.train:
|
124 |
+
# ==============================================================================
|
125 |
+
train_script.train.checkpoint_cfg = @utils.CheckpointConfig()
|
126 |
+
train_script.train.eval_period = 10000
|
127 |
+
train_script.train.eval_steps = 20
|
128 |
+
train_script.train.infer_eval_dataset_cfg = None
|
129 |
+
train_script.train.model = %MODEL
|
130 |
+
train_script.train.model_dir = %MODEL_DIR
|
131 |
+
train_script.train.partitioner = @partitioning.PjitPartitioner()
|
132 |
+
train_script.train.random_seed = %RANDOM_SEED
|
133 |
+
train_script.train.summarize_config_fn = @gin_utils.summarize_gin_config
|
134 |
+
train_script.train.total_steps = %TRAIN_STEPS
|
135 |
+
train_script.train.train_dataset_cfg = @train/utils.DatasetConfig()
|
136 |
+
train_script.train.train_eval_dataset_cfg = @train_eval/utils.DatasetConfig()
|
137 |
+
train_script.train.trainer_cls = @trainer.Trainer
|
138 |
+
train_script.train.use_gda = False
|
139 |
+
train_script.train.use_hardware_rng = %USE_HARDWARE_RNG
|
140 |
+
|
141 |
+
# Parameters for trainer.Trainer:
|
142 |
+
# ==============================================================================
|
143 |
+
trainer.Trainer.learning_rate_fn = @utils.create_learning_rate_scheduler()
|
144 |
+
trainer.Trainer.num_microbatches = None
|
145 |
+
|
146 |
+
# Parameters for network.Transformer:
|
147 |
+
# ==============================================================================
|
148 |
+
network.Transformer.config = @network.T5Config()
|
config.json
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "
|
3 |
"architectures": [
|
4 |
"T5ForConditionalGeneration"
|
5 |
],
|
@@ -26,7 +26,7 @@
|
|
26 |
"relative_attention_num_buckets": 32,
|
27 |
"tie_word_embeddings": false,
|
28 |
"torch_dtype": "float32",
|
29 |
-
"transformers_version": "4.
|
30 |
"use_cache": true,
|
31 |
"vocab_size": 32128
|
32 |
}
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "/researchdisk/t5-small-nl16-finnish",
|
3 |
"architectures": [
|
4 |
"T5ForConditionalGeneration"
|
5 |
],
|
|
|
26 |
"relative_attention_num_buckets": 32,
|
27 |
"tie_word_embeddings": false,
|
28 |
"torch_dtype": "float32",
|
29 |
+
"transformers_version": "4.21.2",
|
30 |
"use_cache": true,
|
31 |
"vocab_size": 32128
|
32 |
}
|
convert_t5x_checkpoint_to_flax.py
CHANGED
@@ -3,7 +3,8 @@
|
|
3 |
import argparse
|
4 |
|
5 |
from t5x import checkpoints
|
6 |
-
from transformers import T5Config, FlaxT5ForConditionalGeneration
|
|
|
7 |
|
8 |
|
9 |
def convert_t5x_checkpoint_to_flax(t5x_checkpoint_path, config_name, flax_dump_folder_path):
|
@@ -11,37 +12,36 @@ def convert_t5x_checkpoint_to_flax(t5x_checkpoint_path, config_name, flax_dump_f
|
|
11 |
flax_model = FlaxT5ForConditionalGeneration(config=config)
|
12 |
t5x_model = checkpoints.load_t5x_checkpoint(t5x_checkpoint_path)
|
13 |
|
14 |
-
split_mlp_wi = "wi_0" in t5x_model["target"]["encoder"]["
|
15 |
|
16 |
# Encoder
|
17 |
for layer_index in range(config.num_layers):
|
18 |
-
layer_name = f"layers_{str(layer_index)}"
|
19 |
|
20 |
# Self-Attention
|
21 |
-
t5x_attention_key = t5x_model["target"]["encoder"][
|
22 |
-
t5x_attention_out = t5x_model["target"]["encoder"][
|
23 |
-
t5x_attention_query = t5x_model["target"]["encoder"][
|
24 |
-
t5x_attention_value = t5x_model["target"]["encoder"][
|
25 |
|
26 |
## Layer Normalization
|
27 |
-
t5x_attention_layer_norm = t5x_model["target"]["encoder"][
|
28 |
|
29 |
if split_mlp_wi:
|
30 |
-
t5x_mlp_wi_0 = t5x_model["target"]["encoder"][
|
31 |
-
t5x_mlp_wi_1 = t5x_model["target"]["encoder"][
|
32 |
else:
|
33 |
-
t5x_mlp_wi = t5x_model["target"]["encoder"][
|
34 |
|
35 |
-
t5x_mlp_wo = t5x_model["target"]["encoder"][
|
36 |
|
37 |
## Layer Normalization
|
38 |
-
t5x_mlp_layer_norm = t5x_model["target"]["encoder"][
|
39 |
|
40 |
# Assigning
|
41 |
-
flax_model.params["encoder"]["block"][str(layer_index)]["layer"]["0"]["SelfAttention"]["k"]["kernel"] = t5x_attention_key
|
42 |
-
flax_model.params["encoder"]["block"][str(layer_index)]["layer"]["0"]["SelfAttention"]["o"]["kernel"] = t5x_attention_out
|
43 |
-
flax_model.params["encoder"]["block"][str(layer_index)]["layer"]["0"]["SelfAttention"]["q"]["kernel"] = t5x_attention_query
|
44 |
-
flax_model.params["encoder"]["block"][str(layer_index)]["layer"]["0"]["SelfAttention"]["v"]["kernel"] = t5x_attention_value
|
45 |
|
46 |
flax_model.params["encoder"]["block"][str(layer_index)]["layer"]["0"]["layer_norm"]["weight"] = t5x_attention_layer_norm
|
47 |
|
@@ -55,59 +55,58 @@ def convert_t5x_checkpoint_to_flax(t5x_checkpoint_path, config_name, flax_dump_f
|
|
55 |
flax_model.params["encoder"]["block"][str(layer_index)]["layer"]["1"]["layer_norm"]["weight"] = t5x_mlp_layer_norm
|
56 |
|
57 |
# Only for layer 0:
|
58 |
-
t5x_encoder_rel_embedding = t5x_model["target"]["encoder"]["relpos_bias"]["rel_embedding"].T
|
59 |
-
flax_model.params["encoder"]["block"]["0"]["layer"]["0"]["SelfAttention"]["relative_attention_bias"]["embedding"] = t5x_encoder_rel_embedding
|
60 |
|
61 |
# Assigning
|
62 |
t5x_encoder_norm = t5x_model["target"]["encoder"]["encoder_norm"]["scale"]
|
63 |
flax_model.params["encoder"]["final_layer_norm"]["weight"] = t5x_encoder_norm
|
64 |
|
65 |
# Decoder
|
66 |
-
for layer_index in range(config.
|
67 |
-
layer_name = f"layers_{str(layer_index)}"
|
68 |
|
69 |
# Self-Attention
|
70 |
-
t5x_attention_key = t5x_model["target"]["decoder"][
|
71 |
-
t5x_attention_out = t5x_model["target"]["decoder"][
|
72 |
-
t5x_attention_query = t5x_model["target"]["decoder"][
|
73 |
-
t5x_attention_value = t5x_model["target"]["decoder"][
|
74 |
|
75 |
## Layer Normalization
|
76 |
-
t5x_pre_attention_layer_norm = t5x_model["target"]["decoder"][
|
77 |
|
78 |
# Encoder-Decoder-Attention
|
79 |
-
t5x_enc_dec_attention_key = t5x_model["target"]["decoder"][
|
80 |
-
t5x_enc_dec_attention_out = t5x_model["target"]["decoder"][
|
81 |
-
t5x_enc_dec_attention_query = t5x_model["target"]["decoder"][
|
82 |
-
t5x_enc_dec_attention_value = t5x_model["target"]["decoder"][
|
83 |
|
84 |
## Layer Normalization
|
85 |
-
t5x_cross_layer_norm = t5x_model["target"]["decoder"][
|
86 |
|
87 |
# MLP
|
88 |
if split_mlp_wi:
|
89 |
-
t5x_mlp_wi_0 = t5x_model["target"]["decoder"][
|
90 |
-
t5x_mlp_wi_1 = t5x_model["target"]["decoder"][
|
91 |
else:
|
92 |
-
t5x_mlp_wi = t5x_model["target"]["decoder"][
|
93 |
|
94 |
-
t5x_mlp_wo = t5x_model["target"]["decoder"][
|
95 |
|
96 |
## Layer Normalization
|
97 |
-
tx5_mlp_layer_norm = t5x_model["target"]["decoder"][
|
98 |
|
99 |
# Assigning
|
100 |
-
flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["0"]["SelfAttention"]["k"]["kernel"] = t5x_attention_key
|
101 |
-
flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["0"]["SelfAttention"]["o"]["kernel"] = t5x_attention_out
|
102 |
-
flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["0"]["SelfAttention"]["q"]["kernel"] = t5x_attention_query
|
103 |
-
flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["0"]["SelfAttention"]["v"]["kernel"] = t5x_attention_value
|
104 |
|
105 |
flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["0"]["layer_norm"]["weight"] = t5x_pre_attention_layer_norm
|
106 |
|
107 |
-
flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["1"]["EncDecAttention"]["k"]["kernel"] = t5x_enc_dec_attention_key
|
108 |
-
flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["1"]["EncDecAttention"]["o"]["kernel"] = t5x_enc_dec_attention_out
|
109 |
-
flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["1"]["EncDecAttention"]["q"]["kernel"] = t5x_enc_dec_attention_query
|
110 |
-
flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["1"]["EncDecAttention"]["v"]["kernel"] = t5x_enc_dec_attention_value
|
111 |
|
112 |
flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["1"]["layer_norm"]["weight"] = t5x_cross_layer_norm
|
113 |
|
@@ -126,8 +125,8 @@ def convert_t5x_checkpoint_to_flax(t5x_checkpoint_path, config_name, flax_dump_f
|
|
126 |
flax_model.params["decoder"]["final_layer_norm"]["weight"] = tx5_decoder_norm
|
127 |
|
128 |
# Only for layer 0:
|
129 |
-
t5x_decoder_rel_embedding = t5x_model["target"]["decoder"]["relpos_bias"]["rel_embedding"].T
|
130 |
-
flax_model.params["decoder"]["block"]["0"]["layer"]["0"]["SelfAttention"]["relative_attention_bias"]["embedding"] = t5x_decoder_rel_embedding
|
131 |
|
132 |
# Token Embeddings
|
133 |
tx5_token_embeddings = t5x_model["target"]["token_embedder"]["embedding"]
|
@@ -139,6 +138,10 @@ def convert_t5x_checkpoint_to_flax(t5x_checkpoint_path, config_name, flax_dump_f
|
|
139 |
flax_model.save_pretrained(flax_dump_folder_path)
|
140 |
print("T5X Model was sucessfully converted!")
|
141 |
|
|
|
|
|
|
|
|
|
142 |
|
143 |
if __name__ == "__main__":
|
144 |
parser = argparse.ArgumentParser()
|
@@ -154,4 +157,6 @@ if __name__ == "__main__":
|
|
154 |
)
|
155 |
args = parser.parse_args()
|
156 |
convert_t5x_checkpoint_to_flax(args.t5x_checkpoint_path, args.config_name, args.flax_dump_folder_path)
|
|
|
|
|
157 |
|
|
|
3 |
import argparse
|
4 |
|
5 |
from t5x import checkpoints
|
6 |
+
from transformers import T5Config, FlaxT5ForConditionalGeneration, AutoModelForSeq2SeqLM
|
7 |
+
import torch
|
8 |
|
9 |
|
10 |
def convert_t5x_checkpoint_to_flax(t5x_checkpoint_path, config_name, flax_dump_folder_path):
|
|
|
12 |
flax_model = FlaxT5ForConditionalGeneration(config=config)
|
13 |
t5x_model = checkpoints.load_t5x_checkpoint(t5x_checkpoint_path)
|
14 |
|
15 |
+
split_mlp_wi = "wi_0" in t5x_model["target"]["encoder"]["encoder"]["mlp"]
|
16 |
|
17 |
# Encoder
|
18 |
for layer_index in range(config.num_layers):
|
|
|
19 |
|
20 |
# Self-Attention
|
21 |
+
t5x_attention_key = t5x_model["target"]["encoder"]["encoder"]["attention"]["key"]["kernel"][:, layer_index, :, :]
|
22 |
+
t5x_attention_out = t5x_model["target"]["encoder"]["encoder"]["attention"]["out"]["kernel"][:, layer_index, :, :]
|
23 |
+
t5x_attention_query = t5x_model["target"]["encoder"]["encoder"]["attention"]["query"]["kernel"][:, layer_index, :, :]
|
24 |
+
t5x_attention_value = t5x_model["target"]["encoder"]["encoder"]["attention"]["value"]["kernel"][:, layer_index, :, :]
|
25 |
|
26 |
## Layer Normalization
|
27 |
+
t5x_attention_layer_norm = t5x_model["target"]["encoder"]["encoder"]["pre_attention_layer_norm"]["scale"][:, layer_index]
|
28 |
|
29 |
if split_mlp_wi:
|
30 |
+
t5x_mlp_wi_0 = t5x_model["target"]["encoder"]["encoder"]["mlp"]["wi_0"]["kernel"][:, layer_index, :]
|
31 |
+
t5x_mlp_wi_1 = t5x_model["target"]["encoder"]["encoder"]["mlp"]["wi_1"]["kernel"][:, layer_index, :]
|
32 |
else:
|
33 |
+
t5x_mlp_wi = t5x_model["target"]["encoder"]["encoder"]["mlp"]["wi"]["kernel"][:, layer_index, :]
|
34 |
|
35 |
+
t5x_mlp_wo = t5x_model["target"]["encoder"]["encoder"]["mlp"]["wo"]["kernel"][:, layer_index, :]
|
36 |
|
37 |
## Layer Normalization
|
38 |
+
t5x_mlp_layer_norm = t5x_model["target"]["encoder"]["encoder"]["pre_mlp_layer_norm"]["scale"][:, layer_index]
|
39 |
|
40 |
# Assigning
|
41 |
+
flax_model.params["encoder"]["block"][str(layer_index)]["layer"]["0"]["SelfAttention"]["k"]["kernel"] = t5x_attention_key.reshape(*t5x_attention_key.shape[:-2], -1)
|
42 |
+
flax_model.params["encoder"]["block"][str(layer_index)]["layer"]["0"]["SelfAttention"]["o"]["kernel"] = t5x_attention_out.reshape(-1, t5x_attention_out.shape[-1])
|
43 |
+
flax_model.params["encoder"]["block"][str(layer_index)]["layer"]["0"]["SelfAttention"]["q"]["kernel"] = t5x_attention_query.reshape(*t5x_attention_query.shape[:-2], -1)
|
44 |
+
flax_model.params["encoder"]["block"][str(layer_index)]["layer"]["0"]["SelfAttention"]["v"]["kernel"] = t5x_attention_value.reshape(*t5x_attention_value.shape[:-2], -1)
|
45 |
|
46 |
flax_model.params["encoder"]["block"][str(layer_index)]["layer"]["0"]["layer_norm"]["weight"] = t5x_attention_layer_norm
|
47 |
|
|
|
55 |
flax_model.params["encoder"]["block"][str(layer_index)]["layer"]["1"]["layer_norm"]["weight"] = t5x_mlp_layer_norm
|
56 |
|
57 |
# Only for layer 0:
|
58 |
+
t5x_encoder_rel_embedding = t5x_model["target"]["encoder"]["encoder"]["relpos_bias"]["rel_embedding"].T
|
59 |
+
flax_model.params["encoder"]["block"]["0"]["layer"]["0"]["SelfAttention"]["relative_attention_bias"]["embedding"] = t5x_encoder_rel_embedding[:, 0, :]
|
60 |
|
61 |
# Assigning
|
62 |
t5x_encoder_norm = t5x_model["target"]["encoder"]["encoder_norm"]["scale"]
|
63 |
flax_model.params["encoder"]["final_layer_norm"]["weight"] = t5x_encoder_norm
|
64 |
|
65 |
# Decoder
|
66 |
+
for layer_index in range(config.num_decoder_layers):
|
|
|
67 |
|
68 |
# Self-Attention
|
69 |
+
t5x_attention_key = t5x_model["target"]["decoder"]["decoder"]["self_attention"]["key"]["kernel"][:, layer_index, :, :]
|
70 |
+
t5x_attention_out = t5x_model["target"]["decoder"]["decoder"]["self_attention"]["out"]["kernel"][:, layer_index, :, :]
|
71 |
+
t5x_attention_query = t5x_model["target"]["decoder"]["decoder"]["self_attention"]["query"]["kernel"][:, layer_index, :, :]
|
72 |
+
t5x_attention_value = t5x_model["target"]["decoder"]["decoder"]["self_attention"]["value"]["kernel"][:, layer_index, :, :]
|
73 |
|
74 |
## Layer Normalization
|
75 |
+
t5x_pre_attention_layer_norm = t5x_model["target"]["decoder"]["decoder"]["pre_self_attention_layer_norm"]["scale"][:, layer_index]
|
76 |
|
77 |
# Encoder-Decoder-Attention
|
78 |
+
t5x_enc_dec_attention_key = t5x_model["target"]["decoder"]["decoder"]["encoder_decoder_attention"]["key"]["kernel"][:, layer_index, :, :]
|
79 |
+
t5x_enc_dec_attention_out = t5x_model["target"]["decoder"]["decoder"]["encoder_decoder_attention"]["out"]["kernel"][:, layer_index, :, :]
|
80 |
+
t5x_enc_dec_attention_query = t5x_model["target"]["decoder"]["decoder"]["encoder_decoder_attention"]["query"]["kernel"][:, layer_index, :, :]
|
81 |
+
t5x_enc_dec_attention_value = t5x_model["target"]["decoder"]["decoder"]["encoder_decoder_attention"]["value"]["kernel"][:, layer_index, :, :]
|
82 |
|
83 |
## Layer Normalization
|
84 |
+
t5x_cross_layer_norm = t5x_model["target"]["decoder"]["decoder"]["pre_cross_attention_layer_norm"]["scale"][:, layer_index]
|
85 |
|
86 |
# MLP
|
87 |
if split_mlp_wi:
|
88 |
+
t5x_mlp_wi_0 = t5x_model["target"]["decoder"]["decoder"]["mlp"]["wi_0"]["kernel"][:, layer_index, :]
|
89 |
+
t5x_mlp_wi_1 = t5x_model["target"]["decoder"]["decoder"]["mlp"]["wi_1"]["kernel"][:, layer_index, :]
|
90 |
else:
|
91 |
+
t5x_mlp_wi = t5x_model["target"]["decoder"]["decoder"]["mlp"]["wi"]["kernel"][:, layer_index, :]
|
92 |
|
93 |
+
t5x_mlp_wo = t5x_model["target"]["decoder"]["decoder"]["mlp"]["wo"]["kernel"][:, layer_index, :]
|
94 |
|
95 |
## Layer Normalization
|
96 |
+
tx5_mlp_layer_norm = t5x_model["target"]["decoder"]["decoder"]["pre_mlp_layer_norm"]["scale"][:, layer_index]
|
97 |
|
98 |
# Assigning
|
99 |
+
flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["0"]["SelfAttention"]["k"]["kernel"] = t5x_attention_key.reshape(*t5x_attention_key.shape[:-2], -1)
|
100 |
+
flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["0"]["SelfAttention"]["o"]["kernel"] = t5x_attention_out.reshape(-1, t5x_attention_out.shape[-1])
|
101 |
+
flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["0"]["SelfAttention"]["q"]["kernel"] = t5x_attention_query.reshape(*t5x_attention_query.shape[:-2], -1)
|
102 |
+
flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["0"]["SelfAttention"]["v"]["kernel"] = t5x_attention_value.reshape(*t5x_attention_value.shape[:-2], -1)
|
103 |
|
104 |
flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["0"]["layer_norm"]["weight"] = t5x_pre_attention_layer_norm
|
105 |
|
106 |
+
flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["1"]["EncDecAttention"]["k"]["kernel"] = t5x_enc_dec_attention_key.reshape(*t5x_enc_dec_attention_key.shape[:-2], -1)
|
107 |
+
flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["1"]["EncDecAttention"]["o"]["kernel"] = t5x_enc_dec_attention_out.reshape(-1, t5x_enc_dec_attention_out.shape[-1])
|
108 |
+
flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["1"]["EncDecAttention"]["q"]["kernel"] = t5x_enc_dec_attention_query.reshape(*t5x_enc_dec_attention_query.shape[:-2], -1)
|
109 |
+
flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["1"]["EncDecAttention"]["v"]["kernel"] = t5x_enc_dec_attention_value.reshape(*t5x_enc_dec_attention_value.shape[:-2], -1)
|
110 |
|
111 |
flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["1"]["layer_norm"]["weight"] = t5x_cross_layer_norm
|
112 |
|
|
|
125 |
flax_model.params["decoder"]["final_layer_norm"]["weight"] = tx5_decoder_norm
|
126 |
|
127 |
# Only for layer 0:
|
128 |
+
t5x_decoder_rel_embedding = t5x_model["target"]["decoder"]["decoder"]["relpos_bias"]["rel_embedding"].T
|
129 |
+
flax_model.params["decoder"]["block"]["0"]["layer"]["0"]["SelfAttention"]["relative_attention_bias"]["embedding"] = t5x_decoder_rel_embedding[:, 0, :]
|
130 |
|
131 |
# Token Embeddings
|
132 |
tx5_token_embeddings = t5x_model["target"]["token_embedder"]["embedding"]
|
|
|
138 |
flax_model.save_pretrained(flax_dump_folder_path)
|
139 |
print("T5X Model was sucessfully converted!")
|
140 |
|
141 |
+
def convert_flax_to_pytorch(flax_dump_folder_path, pytorch_dump_folder_path):
|
142 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(flax_dump_folder_path, from_flax=True, torch_dtype=torch.float32)
|
143 |
+
model.save_pretrained(pytorch_dump_folder_path)
|
144 |
+
print("Flax model was sucessfully converted to Pytorch!")
|
145 |
|
146 |
if __name__ == "__main__":
|
147 |
parser = argparse.ArgumentParser()
|
|
|
157 |
)
|
158 |
args = parser.parse_args()
|
159 |
convert_t5x_checkpoint_to_flax(args.t5x_checkpoint_path, args.config_name, args.flax_dump_folder_path)
|
160 |
+
convert_flax_to_pytorch(args.flax_dump_folder_path, args.flax_dump_folder_path)
|
161 |
+
|
162 |
|
flax_model.msgpack
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:af1dfe073774d3fd1413eb3ab376f16e6a8448dd3f979197a1297c2538377b89
|
3 |
+
size 735762207
|
model-info.txt
ADDED
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Variable decoder/decoder/encoder_decoder_attention/key/kernel size 4194304 shape (embed=512, layers=16, heads=8, kv=64) partition spec (None, None, 'model', None)
|
2 |
+
Variable decoder/decoder/encoder_decoder_attention/out/kernel size 4194304 shape (heads=8, layers=16, kv=64, embed=512) partition spec ('model', None, None, None)
|
3 |
+
Variable decoder/decoder/encoder_decoder_attention/query/kernel size 4194304 shape (embed=512, layers=16, heads=8, kv=64) partition spec (None, None, 'model', None)
|
4 |
+
Variable decoder/decoder/encoder_decoder_attention/value/kernel size 4194304 shape (embed=512, layers=16, heads=8, kv=64) partition spec (None, None, 'model', None)
|
5 |
+
Variable decoder/decoder/mlp/wi_0/kernel size 16777216 shape (embed=512, layers=16, mlp=2048) partition spec (None, None, 'model')
|
6 |
+
Variable decoder/decoder/mlp/wi_1/kernel size 16777216 shape (embed=512, layers=16, mlp=2048) partition spec (None, None, 'model')
|
7 |
+
Variable decoder/decoder/mlp/wo/kernel size 16777216 shape (mlp=2048, layers=16, embed=512) partition spec ('model', None, None)
|
8 |
+
Variable decoder/decoder/pre_cross_attention_layer_norm/scale size 8192 shape (embed=512, layers=16) partition spec (None, None)
|
9 |
+
Variable decoder/decoder/pre_mlp_layer_norm/scale size 8192 shape (embed=512, layers=16) partition spec (None, None)
|
10 |
+
Variable decoder/decoder/pre_self_attention_layer_norm/scale size 8192 shape (embed=512, layers=16) partition spec (None, None)
|
11 |
+
Variable decoder/decoder/relpos_bias/rel_embedding size 4096 shape (heads=8, layers=16, relpos_buckets=32) partition spec ('model', None, None)
|
12 |
+
Variable decoder/decoder/self_attention/key/kernel size 4194304 shape (embed=512, layers=16, heads=8, kv=64) partition spec (None, None, 'model', None)
|
13 |
+
Variable decoder/decoder/self_attention/out/kernel size 4194304 shape (heads=8, layers=16, kv=64, embed=512) partition spec ('model', None, None, None)
|
14 |
+
Variable decoder/decoder/self_attention/query/kernel size 4194304 shape (embed=512, layers=16, heads=8, kv=64) partition spec (None, None, 'model', None)
|
15 |
+
Variable decoder/decoder/self_attention/value/kernel size 4194304 shape (embed=512, layers=16, heads=8, kv=64) partition spec (None, None, 'model', None)
|
16 |
+
Variable decoder/decoder_norm/scale size 512 shape (embed=512) partition spec (None,)
|
17 |
+
Variable decoder/logits_dense/kernel size 16449536 shape (embed=512, vocab=32128) partition spec (None, 'model')
|
18 |
+
Variable encoder/encoder/attention/key/kernel size 4194304 shape (embed=512, layers=16, heads=8, kv=64) partition spec (None, None, 'model', None)
|
19 |
+
Variable encoder/encoder/attention/out/kernel size 4194304 shape (heads=8, layers=16, kv=64, embed=512) partition spec ('model', None, None, None)
|
20 |
+
Variable encoder/encoder/attention/query/kernel size 4194304 shape (embed=512, layers=16, heads=8, kv=64) partition spec (None, None, 'model', None)
|
21 |
+
Variable encoder/encoder/attention/value/kernel size 4194304 shape (embed=512, layers=16, heads=8, kv=64) partition spec (None, None, 'model', None)
|
22 |
+
Variable encoder/encoder/mlp/wi_0/kernel size 16777216 shape (embed=512, layers=16, mlp=2048) partition spec (None, None, 'model')
|
23 |
+
Variable encoder/encoder/mlp/wi_1/kernel size 16777216 shape (embed=512, layers=16, mlp=2048) partition spec (None, None, 'model')
|
24 |
+
Variable encoder/encoder/mlp/wo/kernel size 16777216 shape (mlp=2048, layers=16, embed=512) partition spec ('model', None, None)
|
25 |
+
Variable encoder/encoder/pre_attention_layer_norm/scale size 8192 shape (embed=512, layers=16) partition spec (None, None)
|
26 |
+
Variable encoder/encoder/pre_mlp_layer_norm/scale size 8192 shape (embed=512, layers=16) partition spec (None, None)
|
27 |
+
Variable encoder/encoder/relpos_bias/rel_embedding size 4096 shape (heads=8, layers=16, relpos_buckets=32) partition spec ('model', None, None)
|
28 |
+
Variable encoder/encoder_norm/scale size 512 shape (embed=512) partition spec (None,)
|
29 |
+
Variable token_embedder/embedding size 16449536 shape (vocab=32128, embed=512) partition spec ('model', None)
|
30 |
+
Total number of parameters: 183944192
|
31 |
+
|
32 |
+
Variable param_states/decoder/decoder/encoder_decoder_attention/key/kernel/m size 1 shape (1,) partition spec None
|
33 |
+
Variable param_states/decoder/decoder/encoder_decoder_attention/key/kernel/v size 1 shape (1,) partition spec None
|
34 |
+
Variable param_states/decoder/decoder/encoder_decoder_attention/key/kernel/v_col size 8192 shape (16, 8, 64) partition spec None
|
35 |
+
Variable param_states/decoder/decoder/encoder_decoder_attention/key/kernel/v_row size 8192 shape (512, 16) partition spec None
|
36 |
+
Variable param_states/decoder/decoder/encoder_decoder_attention/out/kernel/m size 1 shape (1,) partition spec None
|
37 |
+
Variable param_states/decoder/decoder/encoder_decoder_attention/out/kernel/v size 1 shape (1,) partition spec None
|
38 |
+
Variable param_states/decoder/decoder/encoder_decoder_attention/out/kernel/v_col size 8192 shape (8, 16, 64) partition spec None
|
39 |
+
Variable param_states/decoder/decoder/encoder_decoder_attention/out/kernel/v_row size 8192 shape (16, 512) partition spec None
|
40 |
+
Variable param_states/decoder/decoder/encoder_decoder_attention/query/kernel/m size 1 shape (1,) partition spec None
|
41 |
+
Variable param_states/decoder/decoder/encoder_decoder_attention/query/kernel/v size 1 shape (1,) partition spec None
|
42 |
+
Variable param_states/decoder/decoder/encoder_decoder_attention/query/kernel/v_col size 8192 shape (16, 8, 64) partition spec None
|
43 |
+
Variable param_states/decoder/decoder/encoder_decoder_attention/query/kernel/v_row size 8192 shape (512, 16) partition spec None
|
44 |
+
Variable param_states/decoder/decoder/encoder_decoder_attention/value/kernel/m size 1 shape (1,) partition spec None
|
45 |
+
Variable param_states/decoder/decoder/encoder_decoder_attention/value/kernel/v size 1 shape (1,) partition spec None
|
46 |
+
Variable param_states/decoder/decoder/encoder_decoder_attention/value/kernel/v_col size 8192 shape (16, 8, 64) partition spec None
|
47 |
+
Variable param_states/decoder/decoder/encoder_decoder_attention/value/kernel/v_row size 8192 shape (512, 16) partition spec None
|
48 |
+
Variable param_states/decoder/decoder/mlp/wi_0/kernel/m size 1 shape (1,) partition spec None
|
49 |
+
Variable param_states/decoder/decoder/mlp/wi_0/kernel/v size 1 shape (1,) partition spec None
|
50 |
+
Variable param_states/decoder/decoder/mlp/wi_0/kernel/v_col size 32768 shape (16, 2048) partition spec None
|
51 |
+
Variable param_states/decoder/decoder/mlp/wi_0/kernel/v_row size 8192 shape (512, 16) partition spec None
|
52 |
+
Variable param_states/decoder/decoder/mlp/wi_1/kernel/m size 1 shape (1,) partition spec None
|
53 |
+
Variable param_states/decoder/decoder/mlp/wi_1/kernel/v size 1 shape (1,) partition spec None
|
54 |
+
Variable param_states/decoder/decoder/mlp/wi_1/kernel/v_col size 32768 shape (16, 2048) partition spec None
|
55 |
+
Variable param_states/decoder/decoder/mlp/wi_1/kernel/v_row size 8192 shape (512, 16) partition spec None
|
56 |
+
Variable param_states/decoder/decoder/mlp/wo/kernel/m size 1 shape (1,) partition spec None
|
57 |
+
Variable param_states/decoder/decoder/mlp/wo/kernel/v size 1 shape (1,) partition spec None
|
58 |
+
Variable param_states/decoder/decoder/mlp/wo/kernel/v_col size 32768 shape (2048, 16) partition spec None
|
59 |
+
Variable param_states/decoder/decoder/mlp/wo/kernel/v_row size 8192 shape (16, 512) partition spec None
|
60 |
+
Variable param_states/decoder/decoder/pre_cross_attention_layer_norm/scale/m size 1 shape (1,) partition spec None
|
61 |
+
Variable param_states/decoder/decoder/pre_cross_attention_layer_norm/scale/v size 8192 shape (embed=512, layers=16) partition spec (None, None)
|
62 |
+
Variable param_states/decoder/decoder/pre_cross_attention_layer_norm/scale/v_col size 1 shape (1,) partition spec None
|
63 |
+
Variable param_states/decoder/decoder/pre_cross_attention_layer_norm/scale/v_row size 1 shape (1,) partition spec None
|
64 |
+
Variable param_states/decoder/decoder/pre_mlp_layer_norm/scale/m size 1 shape (1,) partition spec None
|
65 |
+
Variable param_states/decoder/decoder/pre_mlp_layer_norm/scale/v size 8192 shape (embed=512, layers=16) partition spec (None, None)
|
66 |
+
Variable param_states/decoder/decoder/pre_mlp_layer_norm/scale/v_col size 1 shape (1,) partition spec None
|
67 |
+
Variable param_states/decoder/decoder/pre_mlp_layer_norm/scale/v_row size 1 shape (1,) partition spec None
|
68 |
+
Variable param_states/decoder/decoder/pre_self_attention_layer_norm/scale/m size 1 shape (1,) partition spec None
|
69 |
+
Variable param_states/decoder/decoder/pre_self_attention_layer_norm/scale/v size 8192 shape (embed=512, layers=16) partition spec (None, None)
|
70 |
+
Variable param_states/decoder/decoder/pre_self_attention_layer_norm/scale/v_col size 1 shape (1,) partition spec None
|
71 |
+
Variable param_states/decoder/decoder/pre_self_attention_layer_norm/scale/v_row size 1 shape (1,) partition spec None
|
72 |
+
Variable param_states/decoder/decoder/relpos_bias/rel_embedding/m size 1 shape (1,) partition spec None
|
73 |
+
Variable param_states/decoder/decoder/relpos_bias/rel_embedding/v size 4096 shape (heads=8, layers=16, relpos_buckets=32) partition spec ('model', None, None)
|
74 |
+
Variable param_states/decoder/decoder/relpos_bias/rel_embedding/v_col size 1 shape (1,) partition spec None
|
75 |
+
Variable param_states/decoder/decoder/relpos_bias/rel_embedding/v_row size 1 shape (1,) partition spec None
|
76 |
+
Variable param_states/decoder/decoder/self_attention/key/kernel/m size 1 shape (1,) partition spec None
|
77 |
+
Variable param_states/decoder/decoder/self_attention/key/kernel/v size 1 shape (1,) partition spec None
|
78 |
+
Variable param_states/decoder/decoder/self_attention/key/kernel/v_col size 8192 shape (16, 8, 64) partition spec None
|
79 |
+
Variable param_states/decoder/decoder/self_attention/key/kernel/v_row size 8192 shape (512, 16) partition spec None
|
80 |
+
Variable param_states/decoder/decoder/self_attention/out/kernel/m size 1 shape (1,) partition spec None
|
81 |
+
Variable param_states/decoder/decoder/self_attention/out/kernel/v size 1 shape (1,) partition spec None
|
82 |
+
Variable param_states/decoder/decoder/self_attention/out/kernel/v_col size 8192 shape (8, 16, 64) partition spec None
|
83 |
+
Variable param_states/decoder/decoder/self_attention/out/kernel/v_row size 8192 shape (16, 512) partition spec None
|
84 |
+
Variable param_states/decoder/decoder/self_attention/query/kernel/m size 1 shape (1,) partition spec None
|
85 |
+
Variable param_states/decoder/decoder/self_attention/query/kernel/v size 1 shape (1,) partition spec None
|
86 |
+
Variable param_states/decoder/decoder/self_attention/query/kernel/v_col size 8192 shape (16, 8, 64) partition spec None
|
87 |
+
Variable param_states/decoder/decoder/self_attention/query/kernel/v_row size 8192 shape (512, 16) partition spec None
|
88 |
+
Variable param_states/decoder/decoder/self_attention/value/kernel/m size 1 shape (1,) partition spec None
|
89 |
+
Variable param_states/decoder/decoder/self_attention/value/kernel/v size 1 shape (1,) partition spec None
|
90 |
+
Variable param_states/decoder/decoder/self_attention/value/kernel/v_col size 8192 shape (16, 8, 64) partition spec None
|
91 |
+
Variable param_states/decoder/decoder/self_attention/value/kernel/v_row size 8192 shape (512, 16) partition spec None
|
92 |
+
Variable param_states/decoder/decoder_norm/scale/m size 1 shape (1,) partition spec None
|
93 |
+
Variable param_states/decoder/decoder_norm/scale/v size 512 shape (embed=512) partition spec (None,)
|
94 |
+
Variable param_states/decoder/decoder_norm/scale/v_col size 1 shape (1,) partition spec None
|
95 |
+
Variable param_states/decoder/decoder_norm/scale/v_row size 1 shape (1,) partition spec None
|
96 |
+
Variable param_states/decoder/logits_dense/kernel/m size 1 shape (1,) partition spec None
|
97 |
+
Variable param_states/decoder/logits_dense/kernel/v size 1 shape (1,) partition spec None
|
98 |
+
Variable param_states/decoder/logits_dense/kernel/v_col size 32128 shape (32128,) partition spec None
|
99 |
+
Variable param_states/decoder/logits_dense/kernel/v_row size 512 shape (512,) partition spec None
|
100 |
+
Variable param_states/encoder/encoder/attention/key/kernel/m size 1 shape (1,) partition spec None
|
101 |
+
Variable param_states/encoder/encoder/attention/key/kernel/v size 1 shape (1,) partition spec None
|
102 |
+
Variable param_states/encoder/encoder/attention/key/kernel/v_col size 8192 shape (16, 8, 64) partition spec None
|
103 |
+
Variable param_states/encoder/encoder/attention/key/kernel/v_row size 8192 shape (512, 16) partition spec None
|
104 |
+
Variable param_states/encoder/encoder/attention/out/kernel/m size 1 shape (1,) partition spec None
|
105 |
+
Variable param_states/encoder/encoder/attention/out/kernel/v size 1 shape (1,) partition spec None
|
106 |
+
Variable param_states/encoder/encoder/attention/out/kernel/v_col size 8192 shape (8, 16, 64) partition spec None
|
107 |
+
Variable param_states/encoder/encoder/attention/out/kernel/v_row size 8192 shape (16, 512) partition spec None
|
108 |
+
Variable param_states/encoder/encoder/attention/query/kernel/m size 1 shape (1,) partition spec None
|
109 |
+
Variable param_states/encoder/encoder/attention/query/kernel/v size 1 shape (1,) partition spec None
|
110 |
+
Variable param_states/encoder/encoder/attention/query/kernel/v_col size 8192 shape (16, 8, 64) partition spec None
|
111 |
+
Variable param_states/encoder/encoder/attention/query/kernel/v_row size 8192 shape (512, 16) partition spec None
|
112 |
+
Variable param_states/encoder/encoder/attention/value/kernel/m size 1 shape (1,) partition spec None
|
113 |
+
Variable param_states/encoder/encoder/attention/value/kernel/v size 1 shape (1,) partition spec None
|
114 |
+
Variable param_states/encoder/encoder/attention/value/kernel/v_col size 8192 shape (16, 8, 64) partition spec None
|
115 |
+
Variable param_states/encoder/encoder/attention/value/kernel/v_row size 8192 shape (512, 16) partition spec None
|
116 |
+
Variable param_states/encoder/encoder/mlp/wi_0/kernel/m size 1 shape (1,) partition spec None
|
117 |
+
Variable param_states/encoder/encoder/mlp/wi_0/kernel/v size 1 shape (1,) partition spec None
|
118 |
+
Variable param_states/encoder/encoder/mlp/wi_0/kernel/v_col size 32768 shape (16, 2048) partition spec None
|
119 |
+
Variable param_states/encoder/encoder/mlp/wi_0/kernel/v_row size 8192 shape (512, 16) partition spec None
|
120 |
+
Variable param_states/encoder/encoder/mlp/wi_1/kernel/m size 1 shape (1,) partition spec None
|
121 |
+
Variable param_states/encoder/encoder/mlp/wi_1/kernel/v size 1 shape (1,) partition spec None
|
122 |
+
Variable param_states/encoder/encoder/mlp/wi_1/kernel/v_col size 32768 shape (16, 2048) partition spec None
|
123 |
+
Variable param_states/encoder/encoder/mlp/wi_1/kernel/v_row size 8192 shape (512, 16) partition spec None
|
124 |
+
Variable param_states/encoder/encoder/mlp/wo/kernel/m size 1 shape (1,) partition spec None
|
125 |
+
Variable param_states/encoder/encoder/mlp/wo/kernel/v size 1 shape (1,) partition spec None
|
126 |
+
Variable param_states/encoder/encoder/mlp/wo/kernel/v_col size 32768 shape (2048, 16) partition spec None
|
127 |
+
Variable param_states/encoder/encoder/mlp/wo/kernel/v_row size 8192 shape (16, 512) partition spec None
|
128 |
+
Variable param_states/encoder/encoder/pre_attention_layer_norm/scale/m size 1 shape (1,) partition spec None
|
129 |
+
Variable param_states/encoder/encoder/pre_attention_layer_norm/scale/v size 8192 shape (embed=512, layers=16) partition spec (None, None)
|
130 |
+
Variable param_states/encoder/encoder/pre_attention_layer_norm/scale/v_col size 1 shape (1,) partition spec None
|
131 |
+
Variable param_states/encoder/encoder/pre_attention_layer_norm/scale/v_row size 1 shape (1,) partition spec None
|
132 |
+
Variable param_states/encoder/encoder/pre_mlp_layer_norm/scale/m size 1 shape (1,) partition spec None
|
133 |
+
Variable param_states/encoder/encoder/pre_mlp_layer_norm/scale/v size 8192 shape (embed=512, layers=16) partition spec (None, None)
|
134 |
+
Variable param_states/encoder/encoder/pre_mlp_layer_norm/scale/v_col size 1 shape (1,) partition spec None
|
135 |
+
Variable param_states/encoder/encoder/pre_mlp_layer_norm/scale/v_row size 1 shape (1,) partition spec None
|
136 |
+
Variable param_states/encoder/encoder/relpos_bias/rel_embedding/m size 1 shape (1,) partition spec None
|
137 |
+
Variable param_states/encoder/encoder/relpos_bias/rel_embedding/v size 4096 shape (heads=8, layers=16, relpos_buckets=32) partition spec ('model', None, None)
|
138 |
+
Variable param_states/encoder/encoder/relpos_bias/rel_embedding/v_col size 1 shape (1,) partition spec None
|
139 |
+
Variable param_states/encoder/encoder/relpos_bias/rel_embedding/v_row size 1 shape (1,) partition spec None
|
140 |
+
Variable param_states/encoder/encoder_norm/scale/m size 1 shape (1,) partition spec None
|
141 |
+
Variable param_states/encoder/encoder_norm/scale/v size 512 shape (embed=512) partition spec (None,)
|
142 |
+
Variable param_states/encoder/encoder_norm/scale/v_col size 1 shape (1,) partition spec None
|
143 |
+
Variable param_states/encoder/encoder_norm/scale/v_row size 1 shape (1,) partition spec None
|
144 |
+
Variable param_states/token_embedder/embedding/m size 1 shape (1,) partition spec None
|
145 |
+
Variable param_states/token_embedder/embedding/v size 1 shape (1,) partition spec None
|
146 |
+
Variable param_states/token_embedder/embedding/v_col size 32128 shape (32128,) partition spec None
|
147 |
+
Variable param_states/token_embedder/embedding/v_row size 512 shape (512,) partition spec None
|
148 |
+
Variable step size 1 shape () partition spec None
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:05fe4c98850f026cd8154f4358131f3fe9f8538fb692a4621d31a316ac620c80
|
3 |
+
size 735867349
|
train/events.out.tfevents.1661710468.t1v-n-12f94ad0-w-0.60675.0.v2
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ee5357b199786bd136f34c89c093f98ec5417d1cf220340749fc2496418fc60c
|
3 |
+
size 16868
|
training_eval/pretrain_finnish/events.out.tfevents.1661710468.t1v-n-12f94ad0-w-0.60675.1.v2
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:776cdaf0c0ff210e9e367110778093f7d42c2d9c7836a1a8a4667fb780f2e758
|
3 |
+
size 9244
|