File size: 1,745 Bytes
3d174f5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: whisper-small-keyword-spotting-m
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-small-keyword-spotting-m
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0022
- Accuracy: 0.9995
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 0
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.0146 | 1.0 | 356 | 0.0231 | 0.9925 |
| 0.0124 | 2.0 | 712 | 0.0105 | 0.9977 |
| 0.0091 | 3.0 | 1068 | 0.0015 | 0.9999 |
| 0.0101 | 4.0 | 1425 | 0.0028 | 0.9994 |
| 0.0094 | 5.0 | 1780 | 0.0022 | 0.9995 |
### Framework versions
- Transformers 4.29.0.dev0
- Pytorch 2.0.0
- Datasets 2.10.1
- Tokenizers 0.13.2
|