File size: 7,575 Bytes
753a872
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import torch
import os
import asyncio
import requests
from io import BytesIO
from PIL import Image
from urllib.parse import urlparse
import numpy as np


def split_image_ur(img, max_slice_num, image_size, vit_image_size, force_min_size=False):
    if force_min_size:
        img = resize_by_patch_size_ur(img, min_size= image_size, max_size= image_size * max_slice_num, patch_size=14)
    slice_config = {
        "max_slice_nums": max_slice_num,
        "scale_resolution": image_size,
        "patch_size": 14
    }
    source_image, sub_images, _ = do_slice_by_minicpmv_strategy_ur(
                    img, max_slice_nums=slice_config["max_slice_nums"], scale_resolution=slice_config["scale_resolution"], patch_size=slice_config["patch_size"], vit_image_size=vit_image_size)
    splits = []
    splits.append(source_image)
    for i in range(len(sub_images)):
        for j in range(len(sub_images[0])):
            splits.append(sub_images[i][j])
    sliced_images, sliced_shapes = [], []
    for slice_image in splits:
        sliced_images.append(slice_image)
        sliced_shapes.append(np.array((slice_image.size[0] // slice_config["patch_size"], slice_image.size[1] // slice_config["patch_size"])))
    
    return sliced_images, sliced_shapes


import math
from PIL import Image
import torch
import torchvision.transforms.functional as F
from torchvision.transforms import InterpolationMode

# Strategy: MiniCPM-V
def do_slice_by_minicpmv_strategy_ur(image, max_slice_nums=9, scale_resolution=1120, patch_size=14, vit_image_size=448, never_split=False):

    original_size = image.size
    original_width, original_height = original_size
    log_ratio = math.log(original_width / original_height)
    ratio = original_width * original_height / (scale_resolution * scale_resolution)
    multiple = min(math.ceil(ratio), max_slice_nums)

    source_image = None
    best_grid = None
    patches = []

    if multiple <= 1 or never_split:
        # dont need to slice, upsample
        # best_size = find_best_resize(
        #     original_size, scale_resolution, patch_size, allow_upscale=True
        # )
        best_size = (scale_resolution, scale_resolution)
        source_image = image.resize(best_size, Image.BICUBIC)
        border_size = (vit_image_size-scale_resolution)/2
        from PIL import ImageOps
        source_image = ImageOps.expand(source_image, border=int(border_size), fill=(0,0,0))
    else:
        candidate_split_grids_nums = []
        for i in [multiple - 1, multiple, multiple + 1]:
            if i == 1 or i > max_slice_nums:
                continue
            candidate_split_grids_nums.append(i)

        # source image, down-sampling and ensure divided by patch_size
        # best_resize = find_best_resize(original_size, scale_resolution, patch_size)
        # source_image = image.copy().resize(best_resize, Image.BICUBIC)
        source_image = image.copy().resize((scale_resolution,scale_resolution), Image.BICUBIC)
        candidate_grids = []

        # find best grid
        for split_grids_nums in candidate_split_grids_nums:
            m = 1
            while m <= split_grids_nums:
                if split_grids_nums % m == 0:
                    candidate_grids.append([m, split_grids_nums // m])
                m += 1
        # print("candidate_grids: ", candidate_grids)

        best_grid = [1, 1]
        min_error = float("inf")
        for grid in candidate_grids:
            error = abs(log_ratio - math.log(grid[0] / grid[1]))
            if error < min_error:
                best_grid = grid
                min_error = error

        refine_size = get_refine_size(
            original_size, best_grid, scale_resolution, patch_size, allow_upscale=True
        )

        refine_image = image.resize(refine_size, Image.BICUBIC)
        patches = split_to_patches(refine_image, best_grid, scale_resolution, vit_image_size)

    return source_image, patches, best_grid


def ensure_divide(length, patch_size):
    return max(round(length / patch_size) * patch_size, patch_size)


def find_best_resize(original_size, scale_resolution, patch_size, allow_upscale=False):
    width, height = original_size
    if (width * height > scale_resolution * scale_resolution) or allow_upscale:
        r = width / height
        height = int(scale_resolution / math.sqrt(r))
        width = int(height * r)
    best_width = ensure_divide(width, patch_size)
    best_height = ensure_divide(height, patch_size)

    # print(best_width, best_height, scale_resolution)
    while best_width * best_height  > scale_resolution ** 2:
        # print(best_width)
        best_width -= patch_size
    
    return (best_width, best_height)


def get_refine_size(original_size, grid, scale_resolution, patch_size, allow_upscale=False):
    width, height = original_size
    grid_x, grid_y = grid

    # refine_width = ensure_divide(width, grid_x)
    # refine_height = ensure_divide(height, grid_y)

    # grid_width = refine_width / grid_x
    # grid_height = refine_height / grid_y

    # best_grid_size = find_best_resize(
    #     (grid_width, grid_height),
    #     scale_resolution,
    #     patch_size,
    #     allow_upscale=allow_upscale,
    # )

    refine_size = (scale_resolution * grid_x, scale_resolution * grid_y)

    return refine_size


def split_to_patches(image, grid, scale_resolution, vit_image_size):
    patches = []
    width, height = image.size
    grid_x = int(width / grid[0])
    grid_y = int(height / grid[1])

    from PIL import ImageOps
    border_size = (vit_image_size - scale_resolution)/2
    padded_img = ImageOps.expand(image, border=int(border_size), fill=(0,0,0))
    padded_width, padded_height = padded_img.size
    for i in range(0, padded_height-vit_image_size+1, scale_resolution):
        images = []
        for j in range(0, padded_width-vit_image_size+1, scale_resolution):
            box = (j, i, j + vit_image_size, i + vit_image_size)
            patch = padded_img.crop(box)
            images.append(patch)
        patches.append(images)

    return patches

def resize_by_patch_size_ur(img, min_size=1152, max_size=2240, patch_size=14):
    interpolation=InterpolationMode.BICUBIC
    # min_size=756, max_size=756 * 4, patch_size=14
    if isinstance(img, torch.Tensor):
        height, width = img.shape[:2]
    else:
        width, height = img.size
        
    # Check if the shorter side is less than min_size
    if min(height, width) < min_size:
        # print('less than min_size')
        scale_factor = min_size / min(height, width)
        new_height = max(min_size, round(height * scale_factor))
        new_width = max(min_size, round(width * scale_factor))
        # print(self.max_size)

        # Check if the longer side after resizing is greater than max_size
        if max(new_height, new_width) > max_size:
            scale_factor = max_size / max(new_height, new_width)
            new_height = min(max_size, round(new_height * scale_factor))
            new_width = min(max_size, round(new_width * scale_factor))
    else:
        scale_factor = min(max_size / max(height, width), 1)
        new_height = round(height * scale_factor)
        new_width = round(width * scale_factor)

    # # Make sure the new height and width are divisible by patch_size
    # new_height = (new_height // patch_size) * patch_size
    # new_width = (new_width // patch_size) * patch_size

    # Resize the image
    # img = F.resize(img, (new_height, new_width), interpolation)
    img = img.resize((new_width, new_height), Image.BICUBIC)

    return img