|
import os |
|
import math |
|
import torch |
|
from torch import nn |
|
from functools import partial |
|
import torch.nn.functional as F |
|
|
|
|
|
class Adapter_Template(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.gradient_checkpointing = False |
|
|
|
def freeze_module(self, module): |
|
for p in module.parameters(): |
|
p.requires_grad = False |
|
|
|
def forward(self, inputs, add_start_end=True): |
|
input_ids, hidden_states, targets, attn_mask, loss_mask = inputs |
|
image_features = self.forward_adapter_modules(hidden_states) |
|
return (input_ids, image_features, targets, attn_mask, loss_mask) |
|
|
|
|
|
class Adapter_AIM(Adapter_Template): |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
self.p0 = nn.Sequential( |
|
nn.LayerNorm(config.vision_config.hidden_size), |
|
nn.Linear(config.vision_config.hidden_size, config.intermediate_size), |
|
nn.GELU(), |
|
nn.Linear(config.intermediate_size, config.intermediate_size), |
|
nn.GELU(), |
|
) |
|
self.proj = nn.Linear(config.intermediate_size, config.vision_config.proj_output_dim) |
|
self.retained_feature_size = int(config.retained_image_size/config.vision_config.patch_size) |
|
self.retained_border_size = int((config.vision_config.image_size-config.retained_image_size)/2/config.vision_config.patch_size) |
|
|
|
def freeze(self): |
|
self.freeze_module(self.p0) |
|
self.freeze_module(self.proj) |
|
|
|
def pixel_shuffle(self, x, scale_factor=0.5): |
|
n, w, h, c = x.size() |
|
|
|
x = x.reshape(n, w, int(h * scale_factor), int(c / scale_factor)) |
|
|
|
x = x.permute(0, 2, 1, 3).contiguous() |
|
|
|
x = x.view(n, int(h * scale_factor), int(w * scale_factor), |
|
int(c / (scale_factor * scale_factor))) |
|
return x |
|
|
|
def forward_adapter_modules(self, hidden_states): |
|
h = w = int(hidden_states.shape[1] ** 0.5) |
|
hidden_states = hidden_states.reshape(hidden_states.shape[0], h, w, -1) |
|
hidden_states = hidden_states[:, self.retained_border_size:self.retained_border_size+self.retained_feature_size, self.retained_border_size:self.retained_border_size+self.retained_feature_size, :] |
|
hidden_states = hidden_states.reshape(hidden_states.shape[0], -1, hidden_states.shape[-1]) |
|
|
|
hidden_states = self.proj(self.p0(hidden_states)) |
|
|
|
return hidden_states |