FlashVL commited on
Commit
7230176
·
verified ·
1 Parent(s): 6200037

Upload folder using huggingface_hub

Browse files
README.md CHANGED
@@ -1,3 +1,112 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ datasets:
4
+ - lmms-lab/LLaVA-OneVision-Data
5
+ - BAAI/Infinity-MM
6
+ language:
7
+ - en
8
+ - zh
9
+ base_model:
10
+ - apple/aimv2-huge-patch14-448
11
+ - Qwen/Qwen2-1.5B-Instruct
12
+ pipeline_tag: image-text-to-text
13
+ library_name: transformers
14
+ ---
15
+
16
+ # FlashVL-2B-Dynamic
17
+ [\[📜 FlashVL\]](https://www.arxiv.org/abs/2505.09498)
18
+
19
+ ![image/png](https://s3plus.meituan.net/automl-datasets/mlm/logo.jpg)
20
+
21
+ ## Introduction
22
+
23
+ We are excited to introduce **FlashVL**, a novel approach to optimizing Vision-Language Models (VLMs) for real-time applications, targeting ultra-low latency and high throughput without sacrificing accuracy. Leveraging advanced architectural enhancements and efficient computational strategies, Flash-VL 2B is designed to maximize throughput by reducing processing time while maintaining competitive performance across multiple vision-language benchmarks. Our approach includes tailored architectural choices, token compression mechanisms, data curation, training schemes, and a novel image processing technique called implicit semantic stitching that effectively balances computational load and model performance. Through extensive evaluations on 11 standard VLM benchmarks, we demonstrate that Flash-VL 2B achieves state-of-the-art results in both speed and accuracy, making it a promising solution for deployment in resource-constrained environments and large-scale real-time applications.
24
+
25
+
26
+ ### Environment Setup
27
+
28
+ ```bash
29
+ pip install torch==2.1.2
30
+ pip install transformers==4.50.0.dev0
31
+ ```
32
+
33
+
34
+ ### How to use it?
35
+
36
+ ```python
37
+ import torch
38
+ from PIL import Image
39
+ import requests
40
+ from io import BytesIO
41
+ from transformers import AutoModel, AutoTokenizer, CLIPImageProcessor
42
+
43
+ model_path = "FlashVL/FlashVL-2B-Dynamic"
44
+ model = AutoModel.from_pretrained(model_path, torch_dtype=torch.bfloat16,trust_remote_code=True,device_map='cuda')
45
+ model.tokenizer = AutoTokenizer.from_pretrained(model_path,device_map='cuda')
46
+ model.im_trans = CLIPImageProcessor.from_pretrained(model_path)
47
+
48
+ # single-image single-round conversation (单图单轮对话)
49
+ image_url ="https://s3plus.meituan.net/automl-datasets/mlm/0516.png"
50
+ response = requests.get(image_url)
51
+ image_data = BytesIO(response.content)
52
+ pil_image = Image.open(image_data).convert('RGB')
53
+ messages = [{'role': 'user', 'content': "生成图中菜品的菜谱"}] # answer: EXTRA
54
+ answer = model.chat(pil_image, messages, do_sample=False, max_new_tokens=256)
55
+ print(answer)
56
+
57
+ # single-image multi-round conversation (单图多轮对话)
58
+ messages = [
59
+ {'role': 'user', 'content': '这是什么'},
60
+ {"role": "assistant", "content": '这是一道看起来像是银耳莲子汤的甜品。\
61
+ 银耳是一种常见的食材,通常用于制作甜品和汤品,具有软糯的口感和清润的口感。莲 \
62
+ 子是莲子的干燥部分,常用于中医和食疗中,具有补脾止泻的功效。图片中还可以看到 \
63
+ 一些枸杞和核桃,枸杞富含维生素和抗氧化物质,核桃则提供丰富的蛋白质和健康脂肪。 \
64
+ 整体来看,这道甜品不仅美味,还具有一定的营养价值。'},
65
+ {'role': 'user', 'content': '对图中菜品卡路里分析'}
66
+ ]
67
+ answer = model.chat(pil_image, messages, do_sample=False, max_new_tokens=512)
68
+ print(answer)
69
+
70
+ # pure-text single-round conversation (纯文本对话)
71
+ messages = [{'role': 'user', 'content': "who are you"}]
72
+ answer = model.chat(None, messages, do_sample=False, max_new_tokens=256)
73
+ print(answer)
74
+
75
+ ```
76
+
77
+ ### Evaluation
78
+
79
+ | Benchmark | Qwen2-VL-2B | Aquila-VL-2B | InternVL2.5-2B | Flash-VL-2B<sub>s<sub> | Flash-VL-2B<sub>d<sub> | Flash-VL-2B<sub>d-ISS<sub> |
80
+ | :-------------: | :-------------: | :-------------: | :-------------: |:-------------: |:-------------: |:-------------: |
81
+ | MMMU<sub>val<sub> | 41.9 | 44.4 | 41.8 | 43.6 | 42.9 | 42.9 |
82
+ | MMBench<sup>en<sup> | 74.9 | 78.6 | 74.7 | 78.4 | 78.4 | 79.1 |
83
+ | MMBench<sup>cn<sup> | 73.5 | 76.3 | 71.6 | 74.7 | 74.9 | 76.7 |
84
+ | MMStar | 48.0 | 54.9 | 54.1 | 53.8 | 54.4 | 54.1 |
85
+ | MathVista<sub>testmini<sub> | 43.0 | 59.4 | 50.9 | 59.3 | 58.1 | 61.5 |
86
+ | AI2D<sub>test<sub> | 74.1 | 75.0 | 75.1 | 74.2 | 74.1 | 74.4 |
87
+ | MMVet | 49.5 | 40.9 | 61.7 | 47.3 | 52.7 | 50.7 |
88
+ | HallusionBench | 39.2 | 38.5 | 42.7 | 43.5 | 45.5 | 49.0 |
89
+ | OCRBench | 794 | 773 | 800 | 764 | 831 | 843 |
90
+ | MME | 1872 | 1813 | 2091 | 1715 | 1866 | 1850 |
91
+ | SEEDBench | 71.5 | 78.9 | 73.2 | 73.6 | 73.6 | 74.5 |
92
+ | Average | 60.2 | 62.6 | 63.6 | 62.4 | 64.0 | 64.8 |
93
+
94
+
95
+ We use [VLMEvalKit](https://github.com/open-compass/VLMEvalKit) to evaluate FlashVL-2B-Static.
96
+
97
+
98
+
99
+ ## Citation
100
+ If you find this project useful in your research, please consider citing:
101
+
102
+ ```BibTeX
103
+ @misc{zhang2025flashvl2boptimizingvisionlanguage,
104
+ title={Flash-VL 2B: Optimizing Vision-Language Model Performance for Ultra-Low Latency and High Throughput},
105
+ author={Bo Zhang and Shuo Li and Runhe Tian and Yang Yang and Jixin Tang and Jinhao Zhou and Lin Ma},
106
+ year={2025},
107
+ eprint={2505.09498},
108
+ archivePrefix={arXiv},
109
+ primaryClass={cs.CV},
110
+ url={https://arxiv.org/abs/2505.09498},
111
+ }
112
+ ```
adapters.py ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import math
3
+ import torch
4
+ from torch import nn
5
+ from functools import partial
6
+ import torch.nn.functional as F
7
+
8
+
9
+ class Adapter_Template(nn.Module):
10
+ def __init__(self, config):
11
+ super().__init__()
12
+ self.gradient_checkpointing = False
13
+
14
+ def freeze_module(self, module):
15
+ for p in module.parameters():
16
+ p.requires_grad = False
17
+
18
+ def forward(self, inputs, add_start_end=True):
19
+ input_ids, hidden_states, targets, attn_mask, loss_mask = inputs
20
+ image_features = self.forward_adapter_modules(hidden_states)
21
+ return (input_ids, image_features, targets, attn_mask, loss_mask)
22
+
23
+
24
+ class Adapter_AIM(Adapter_Template):
25
+
26
+ def __init__(self, config):
27
+ super().__init__(config)
28
+
29
+ self.p0 = nn.Sequential(
30
+ nn.LayerNorm(config.vision_config.hidden_size*4),
31
+ nn.Linear(config.vision_config.hidden_size*4, config.intermediate_size),
32
+ nn.GELU(),
33
+ nn.Linear(config.intermediate_size, config.intermediate_size),
34
+ nn.GELU(),
35
+ )
36
+ self.proj = nn.Linear(config.intermediate_size, config.vision_config.proj_output_dim)
37
+
38
+ def freeze(self):
39
+ self.freeze_module(self.p0)
40
+ self.freeze_module(self.proj)
41
+
42
+ def pixel_shuffle(self, x, scale_factor=0.5):
43
+ n, w, h, c = x.size()
44
+ # N, W, H, C --> N, W, H * scale, C // scale
45
+ x = x.reshape(n, w, int(h * scale_factor), int(c / scale_factor))
46
+ # N, W, H * scale, C // scale --> N, H * scale, W, C // scale
47
+ x = x.permute(0, 2, 1, 3).contiguous()
48
+ # N, H * scale, W, C // scale --> N, H * scale, W * scale, C // (scale ** 2)
49
+ x = x.view(n, int(h * scale_factor), int(w * scale_factor),
50
+ int(c / (scale_factor * scale_factor)))
51
+ return x
52
+
53
+ def forward_adapter_modules(self, hidden_states):
54
+ h = w = int(hidden_states.shape[1] ** 0.5)
55
+ hidden_states = hidden_states.reshape(hidden_states.shape[0], h, w, -1)
56
+ hidden_states = self.pixel_shuffle(hidden_states, scale_factor=0.5)
57
+ hidden_states = hidden_states.reshape(hidden_states.shape[0], -1, hidden_states.shape[-1])
58
+
59
+ hidden_states = self.proj(self.p0(hidden_states))
60
+
61
+ return hidden_states
added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
config.json ADDED
@@ -0,0 +1,114 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/mnt/dolphinfs/ssd_pool/docker/user/hadoop-mlm/lishuo/repo/fine_tuning_package/model/",
3
+ "architectures": [
4
+ "FlashVLDynamic"
5
+ ],
6
+ "auto_map": {
7
+ "AutoConfig": "configuration_FlashVLDynamic.FlashVLDynamicConfig",
8
+ "AutoModel": "modeling_FlashVLDynamic.FlashVLDynamic"
9
+ },
10
+ "intermediate_size": 7168,
11
+ "image_token_num": 256,
12
+ "image_split": 4,
13
+ "llm_config":{
14
+ "attention_dropout": 0.0,
15
+ "bos_token_id": 151643,
16
+ "eos_token_id": 151645,
17
+ "hidden_act": "silu",
18
+ "hidden_size": 1536,
19
+ "initializer_range": 0.02,
20
+ "intermediate_size": 8960,
21
+ "max_position_embeddings": 32768,
22
+ "max_window_layers": 21,
23
+ "model_type": "qwen2",
24
+ "num_attention_heads": 12,
25
+ "num_hidden_layers": 28,
26
+ "num_key_value_heads": 2,
27
+ "rms_norm_eps": 1e-06,
28
+ "rope_scaling": null,
29
+ "rope_theta": 1000000.0,
30
+ "sliding_window": null,
31
+ "tie_word_embeddings": true,
32
+ "torch_dtype": "bfloat16",
33
+ "transformers_version": "4.45.0.dev0",
34
+ "use_cache": true,
35
+ "use_sliding_window": false,
36
+ "vocab_size": 151936
37
+ },
38
+ "vision_config": {
39
+ "_name_or_path": "",
40
+ "add_cross_attention": false,
41
+ "architectures": null,
42
+ "attention_dropout": 0.0,
43
+ "bad_words_ids": null,
44
+ "begin_suppress_tokens": null,
45
+ "bos_token_id": null,
46
+ "chunk_size_feed_forward": 0,
47
+ "cross_attention_hidden_size": null,
48
+ "decoder_start_token_id": null,
49
+ "diversity_penalty": 0.0,
50
+ "do_sample": false,
51
+ "early_stopping": false,
52
+ "encoder_no_repeat_ngram_size": 0,
53
+ "eos_token_id": null,
54
+ "exponential_decay_length_penalty": null,
55
+ "finetuning_task": null,
56
+ "forced_bos_token_id": null,
57
+ "forced_eos_token_id": null,
58
+ "hidden_size": 1536,
59
+ "id2label": {
60
+ "0": "LABEL_0",
61
+ "1": "LABEL_1"
62
+ },
63
+ "image_size": 448,
64
+ "intermediate_size": 4096,
65
+ "is_decoder": false,
66
+ "is_encoder_decoder": false,
67
+ "label2id": {
68
+ "LABEL_0": 0,
69
+ "LABEL_1": 1
70
+ },
71
+ "length_penalty": 1.0,
72
+ "max_length": 20,
73
+ "min_length": 0,
74
+ "model_type": "aimv2",
75
+ "no_repeat_ngram_size": 0,
76
+ "num_attention_heads": 12,
77
+ "num_beam_groups": 1,
78
+ "num_beams": 1,
79
+ "num_channels": 3,
80
+ "num_hidden_layers": 24,
81
+ "num_return_sequences": 1,
82
+ "output_attentions": false,
83
+ "output_hidden_states": false,
84
+ "output_scores": false,
85
+ "pad_token_id": null,
86
+ "patch_size": 14,
87
+ "prefix": null,
88
+ "problem_type": null,
89
+ "proj_output_dim": 1536,
90
+ "projection_dropout": 0.0,
91
+ "pruned_heads": {},
92
+ "qkv_bias": false,
93
+ "remove_invalid_values": false,
94
+ "repetition_penalty": 1.0,
95
+ "return_dict": true,
96
+ "return_dict_in_generate": false,
97
+ "rms_norm_eps": 1e-05,
98
+ "sep_token_id": null,
99
+ "suppress_tokens": null,
100
+ "task_specific_params": null,
101
+ "temperature": 1.0,
102
+ "tf_legacy_loss": false,
103
+ "tie_encoder_decoder": false,
104
+ "tie_word_embeddings": true,
105
+ "tokenizer_class": null,
106
+ "top_k": 50,
107
+ "top_p": 1.0,
108
+ "torch_dtype": null,
109
+ "torchscript": false,
110
+ "typical_p": 1.0,
111
+ "use_bfloat16": false,
112
+ "use_bias": false
113
+ }
114
+ }
configuration.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {}
configuration_FlashVLDynamic.py ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import copy
2
+ import transformers
3
+ from transformers import PretrainedConfig, Qwen2Config
4
+ from .configuration_aimv2 import AIMv2Config
5
+
6
+ class FlashVLDynamicConfig(PretrainedConfig):
7
+ model_type = 'FlashVLDynamicConfig'
8
+ is_composition = True
9
+
10
+ def __init__(
11
+ self,
12
+ vision_config,
13
+ llm_config,
14
+ **kwargs
15
+ ):
16
+ super().__init__(**kwargs)
17
+ self.vision_config = AIMv2Config(**vision_config)
18
+ self.llm_config = Qwen2Config(**llm_config)
19
+
20
+ def to_dict(self):
21
+
22
+ output = copy.deepcopy(self.__dict__)
23
+ output['vision_config'] = self.vision_config.to_dict()
24
+ output['llm_config'] = self.llm_config.to_dict()
25
+
26
+ return output
configuration_aimv2.py ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Any
2
+
3
+ from transformers.configuration_utils import PretrainedConfig
4
+
5
+ __all__ = ["AIMv2Config"]
6
+
7
+
8
+ class AIMv2Config(PretrainedConfig):
9
+ """This is the configuration class to store the configuration of an [`AIMv2Model`].
10
+
11
+ Instantiating a configuration with the defaults will yield a similar configuration
12
+ to that of the [apple/aimv2-large-patch14-224](https://huggingface.co/apple/aimv2-large-patch14-224).
13
+
14
+ Args:
15
+ hidden_size: Dimension of the hidden representations.
16
+ intermediate_size: Dimension of the SwiGLU representations.
17
+ num_hidden_layers: Number of hidden layers in the Transformer.
18
+ num_attention_heads: Number of attention heads for each attention layer
19
+ in the Transformer.
20
+ num_channels: Number of input channels.
21
+ image_size: Image size.
22
+ patch_size: Patch size.
23
+ rms_norm_eps: Epsilon value used for the RMS normalization layer.
24
+ attention_dropout: Dropout ratio for attention probabilities.
25
+ projection_dropout: Dropout ratio for the projection layer after the attention.
26
+ qkv_bias: Whether to add a bias to the queries, keys and values.
27
+ use_bias: Whether to add a bias in the feed-forward and projection layers.
28
+ kwargs: Keyword arguments for the [`PretrainedConfig`].
29
+ """
30
+
31
+ model_type: str = "aimv2"
32
+
33
+ def __init__(
34
+ self,
35
+ hidden_size: int = 1024,
36
+ intermediate_size: int = 2816,
37
+ num_hidden_layers: int = 24,
38
+ num_attention_heads: int = 8,
39
+ num_channels: int = 3,
40
+ image_size: int = 224,
41
+ patch_size: int = 14,
42
+ rms_norm_eps: float = 1e-5,
43
+ attention_dropout: float = 0.0,
44
+ projection_dropout: float = 0.0,
45
+ qkv_bias: bool = False,
46
+ use_bias: bool = False,
47
+ **kwargs: Any,
48
+ ):
49
+ super().__init__(**kwargs)
50
+ self.hidden_size = hidden_size
51
+ self.intermediate_size = intermediate_size
52
+ self.num_hidden_layers = num_hidden_layers
53
+ self.num_attention_heads = num_attention_heads
54
+ self.num_channels = num_channels
55
+ self.patch_size = patch_size
56
+ self.image_size = image_size
57
+ self.attention_dropout = attention_dropout
58
+ self.rms_norm_eps = rms_norm_eps
59
+
60
+ self.projection_dropout = projection_dropout
61
+ self.qkv_bias = qkv_bias
62
+ self.use_bias = use_bias
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "eos_token_id": 151645,
4
+ "max_new_tokens": 2048,
5
+ "pad_token_id": 151643,
6
+ "transformers_version": "4.45.0.dev0"
7
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
mm_constants.py ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ # Model Constants
2
+ IGNORE_INDEX = -100
3
+ IMAGE_TOKEN_INDEX = -200
4
+ IMAGE_PAD_TOKEN_INDEX = -201
5
+
6
+ DEFAULT_SLICE_START_TOKEN = "[PLACEHOLDER_0]"
7
+ DEFAULT_SLICE_END_TOKEN = "[PLACEHOLDER_1]"
model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9f9d37145fe62c36bb43d02b3e1fba703465d4241f3c9545ded3c96291873893
3
+ size 4918323328
model-00002-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ec806b72857f9a0db631fe56bddcbb7b6493d9cd616e25428af426533a4aa240
3
+ size 212893224
model.safetensors.index.json ADDED
@@ -0,0 +1,527 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 5131156480
4
+ },
5
+ "weight_map": {
6
+ "adp.p0.0.bias": "model-00001-of-00002.safetensors",
7
+ "adp.p0.0.weight": "model-00001-of-00002.safetensors",
8
+ "adp.p0.1.bias": "model-00002-of-00002.safetensors",
9
+ "adp.p0.1.weight": "model-00002-of-00002.safetensors",
10
+ "adp.p0.3.bias": "model-00002-of-00002.safetensors",
11
+ "adp.p0.3.weight": "model-00002-of-00002.safetensors",
12
+ "adp.proj.bias": "model-00002-of-00002.safetensors",
13
+ "adp.proj.weight": "model-00002-of-00002.safetensors",
14
+ "llm.lm_head.weight": "model-00001-of-00002.safetensors",
15
+ "llm.model.embed_tokens.weight": "model-00001-of-00002.safetensors",
16
+ "llm.model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
17
+ "llm.model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
18
+ "llm.model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
19
+ "llm.model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
20
+ "llm.model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
21
+ "llm.model.layers.0.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
22
+ "llm.model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
23
+ "llm.model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
24
+ "llm.model.layers.0.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
25
+ "llm.model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
26
+ "llm.model.layers.0.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
27
+ "llm.model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
28
+ "llm.model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
29
+ "llm.model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
30
+ "llm.model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
31
+ "llm.model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
32
+ "llm.model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
33
+ "llm.model.layers.1.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
34
+ "llm.model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
35
+ "llm.model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
36
+ "llm.model.layers.1.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
37
+ "llm.model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
38
+ "llm.model.layers.1.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
39
+ "llm.model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
40
+ "llm.model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
41
+ "llm.model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
42
+ "llm.model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
43
+ "llm.model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
44
+ "llm.model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
45
+ "llm.model.layers.10.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
46
+ "llm.model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
47
+ "llm.model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
48
+ "llm.model.layers.10.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
49
+ "llm.model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
50
+ "llm.model.layers.10.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
51
+ "llm.model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
52
+ "llm.model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
53
+ "llm.model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
54
+ "llm.model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
55
+ "llm.model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
56
+ "llm.model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
57
+ "llm.model.layers.11.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
58
+ "llm.model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
59
+ "llm.model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
60
+ "llm.model.layers.11.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
61
+ "llm.model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
62
+ "llm.model.layers.11.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
63
+ "llm.model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
64
+ "llm.model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
65
+ "llm.model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
66
+ "llm.model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
67
+ "llm.model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
68
+ "llm.model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
69
+ "llm.model.layers.12.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
70
+ "llm.model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
71
+ "llm.model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
72
+ "llm.model.layers.12.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
73
+ "llm.model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
74
+ "llm.model.layers.12.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
75
+ "llm.model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
76
+ "llm.model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
77
+ "llm.model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
78
+ "llm.model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
79
+ "llm.model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
80
+ "llm.model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
81
+ "llm.model.layers.13.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
82
+ "llm.model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
83
+ "llm.model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
84
+ "llm.model.layers.13.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
85
+ "llm.model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
86
+ "llm.model.layers.13.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
87
+ "llm.model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
88
+ "llm.model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
89
+ "llm.model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
90
+ "llm.model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
91
+ "llm.model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
92
+ "llm.model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
93
+ "llm.model.layers.14.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
94
+ "llm.model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
95
+ "llm.model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
96
+ "llm.model.layers.14.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
97
+ "llm.model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
98
+ "llm.model.layers.14.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
99
+ "llm.model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
100
+ "llm.model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
101
+ "llm.model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
102
+ "llm.model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
103
+ "llm.model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
104
+ "llm.model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
105
+ "llm.model.layers.15.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
106
+ "llm.model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
107
+ "llm.model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
108
+ "llm.model.layers.15.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
109
+ "llm.model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
110
+ "llm.model.layers.15.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
111
+ "llm.model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
112
+ "llm.model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
113
+ "llm.model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
114
+ "llm.model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
115
+ "llm.model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
116
+ "llm.model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
117
+ "llm.model.layers.16.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
118
+ "llm.model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
119
+ "llm.model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
120
+ "llm.model.layers.16.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
121
+ "llm.model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
122
+ "llm.model.layers.16.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
123
+ "llm.model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
124
+ "llm.model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
125
+ "llm.model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
126
+ "llm.model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
127
+ "llm.model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
128
+ "llm.model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
129
+ "llm.model.layers.17.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
130
+ "llm.model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
131
+ "llm.model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
132
+ "llm.model.layers.17.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
133
+ "llm.model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
134
+ "llm.model.layers.17.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
135
+ "llm.model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
136
+ "llm.model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
137
+ "llm.model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
138
+ "llm.model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
139
+ "llm.model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
140
+ "llm.model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
141
+ "llm.model.layers.18.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
142
+ "llm.model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
143
+ "llm.model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
144
+ "llm.model.layers.18.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
145
+ "llm.model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
146
+ "llm.model.layers.18.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
147
+ "llm.model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
148
+ "llm.model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
149
+ "llm.model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
150
+ "llm.model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
151
+ "llm.model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
152
+ "llm.model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
153
+ "llm.model.layers.19.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
154
+ "llm.model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
155
+ "llm.model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
156
+ "llm.model.layers.19.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
157
+ "llm.model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
158
+ "llm.model.layers.19.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
159
+ "llm.model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
160
+ "llm.model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
161
+ "llm.model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
162
+ "llm.model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
163
+ "llm.model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
164
+ "llm.model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
165
+ "llm.model.layers.2.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
166
+ "llm.model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
167
+ "llm.model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
168
+ "llm.model.layers.2.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
169
+ "llm.model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
170
+ "llm.model.layers.2.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
171
+ "llm.model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
172
+ "llm.model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
173
+ "llm.model.layers.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
174
+ "llm.model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
175
+ "llm.model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
176
+ "llm.model.layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
177
+ "llm.model.layers.20.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
178
+ "llm.model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
179
+ "llm.model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
180
+ "llm.model.layers.20.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
181
+ "llm.model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
182
+ "llm.model.layers.20.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
183
+ "llm.model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
184
+ "llm.model.layers.21.input_layernorm.weight": "model-00001-of-00002.safetensors",
185
+ "llm.model.layers.21.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
186
+ "llm.model.layers.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
187
+ "llm.model.layers.21.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
188
+ "llm.model.layers.21.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
189
+ "llm.model.layers.21.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
190
+ "llm.model.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
191
+ "llm.model.layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
192
+ "llm.model.layers.21.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
193
+ "llm.model.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
194
+ "llm.model.layers.21.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
195
+ "llm.model.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
196
+ "llm.model.layers.22.input_layernorm.weight": "model-00001-of-00002.safetensors",
197
+ "llm.model.layers.22.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
198
+ "llm.model.layers.22.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
199
+ "llm.model.layers.22.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
200
+ "llm.model.layers.22.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
201
+ "llm.model.layers.22.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
202
+ "llm.model.layers.22.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
203
+ "llm.model.layers.22.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
204
+ "llm.model.layers.22.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
205
+ "llm.model.layers.22.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
206
+ "llm.model.layers.22.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
207
+ "llm.model.layers.22.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
208
+ "llm.model.layers.23.input_layernorm.weight": "model-00001-of-00002.safetensors",
209
+ "llm.model.layers.23.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
210
+ "llm.model.layers.23.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
211
+ "llm.model.layers.23.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
212
+ "llm.model.layers.23.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
213
+ "llm.model.layers.23.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
214
+ "llm.model.layers.23.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
215
+ "llm.model.layers.23.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
216
+ "llm.model.layers.23.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
217
+ "llm.model.layers.23.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
218
+ "llm.model.layers.23.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
219
+ "llm.model.layers.23.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
220
+ "llm.model.layers.24.input_layernorm.weight": "model-00001-of-00002.safetensors",
221
+ "llm.model.layers.24.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
222
+ "llm.model.layers.24.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
223
+ "llm.model.layers.24.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
224
+ "llm.model.layers.24.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
225
+ "llm.model.layers.24.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
226
+ "llm.model.layers.24.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
227
+ "llm.model.layers.24.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
228
+ "llm.model.layers.24.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
229
+ "llm.model.layers.24.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
230
+ "llm.model.layers.24.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
231
+ "llm.model.layers.24.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
232
+ "llm.model.layers.25.input_layernorm.weight": "model-00001-of-00002.safetensors",
233
+ "llm.model.layers.25.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
234
+ "llm.model.layers.25.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
235
+ "llm.model.layers.25.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
236
+ "llm.model.layers.25.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
237
+ "llm.model.layers.25.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
238
+ "llm.model.layers.25.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
239
+ "llm.model.layers.25.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
240
+ "llm.model.layers.25.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
241
+ "llm.model.layers.25.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
242
+ "llm.model.layers.25.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
243
+ "llm.model.layers.25.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
244
+ "llm.model.layers.26.input_layernorm.weight": "model-00001-of-00002.safetensors",
245
+ "llm.model.layers.26.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
246
+ "llm.model.layers.26.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
247
+ "llm.model.layers.26.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
248
+ "llm.model.layers.26.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
249
+ "llm.model.layers.26.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
250
+ "llm.model.layers.26.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
251
+ "llm.model.layers.26.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
252
+ "llm.model.layers.26.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
253
+ "llm.model.layers.26.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
254
+ "llm.model.layers.26.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
255
+ "llm.model.layers.26.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
256
+ "llm.model.layers.27.input_layernorm.weight": "model-00001-of-00002.safetensors",
257
+ "llm.model.layers.27.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
258
+ "llm.model.layers.27.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
259
+ "llm.model.layers.27.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
260
+ "llm.model.layers.27.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
261
+ "llm.model.layers.27.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
262
+ "llm.model.layers.27.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
263
+ "llm.model.layers.27.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
264
+ "llm.model.layers.27.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
265
+ "llm.model.layers.27.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
266
+ "llm.model.layers.27.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
267
+ "llm.model.layers.27.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
268
+ "llm.model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
269
+ "llm.model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
270
+ "llm.model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
271
+ "llm.model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
272
+ "llm.model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
273
+ "llm.model.layers.3.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
274
+ "llm.model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
275
+ "llm.model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
276
+ "llm.model.layers.3.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
277
+ "llm.model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
278
+ "llm.model.layers.3.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
279
+ "llm.model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
280
+ "llm.model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
281
+ "llm.model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
282
+ "llm.model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
283
+ "llm.model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
284
+ "llm.model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
285
+ "llm.model.layers.4.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
286
+ "llm.model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
287
+ "llm.model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
288
+ "llm.model.layers.4.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
289
+ "llm.model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
290
+ "llm.model.layers.4.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
291
+ "llm.model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
292
+ "llm.model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
293
+ "llm.model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
294
+ "llm.model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
295
+ "llm.model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
296
+ "llm.model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
297
+ "llm.model.layers.5.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
298
+ "llm.model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
299
+ "llm.model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
300
+ "llm.model.layers.5.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
301
+ "llm.model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
302
+ "llm.model.layers.5.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
303
+ "llm.model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
304
+ "llm.model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
305
+ "llm.model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
306
+ "llm.model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
307
+ "llm.model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
308
+ "llm.model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
309
+ "llm.model.layers.6.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
310
+ "llm.model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
311
+ "llm.model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
312
+ "llm.model.layers.6.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
313
+ "llm.model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
314
+ "llm.model.layers.6.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
315
+ "llm.model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
316
+ "llm.model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
317
+ "llm.model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
318
+ "llm.model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
319
+ "llm.model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
320
+ "llm.model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
321
+ "llm.model.layers.7.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
322
+ "llm.model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
323
+ "llm.model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
324
+ "llm.model.layers.7.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
325
+ "llm.model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
326
+ "llm.model.layers.7.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
327
+ "llm.model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
328
+ "llm.model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
329
+ "llm.model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
330
+ "llm.model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
331
+ "llm.model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
332
+ "llm.model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
333
+ "llm.model.layers.8.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
334
+ "llm.model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
335
+ "llm.model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
336
+ "llm.model.layers.8.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
337
+ "llm.model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
338
+ "llm.model.layers.8.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
339
+ "llm.model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
340
+ "llm.model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
341
+ "llm.model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
342
+ "llm.model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
343
+ "llm.model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
344
+ "llm.model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
345
+ "llm.model.layers.9.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
346
+ "llm.model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
347
+ "llm.model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
348
+ "llm.model.layers.9.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
349
+ "llm.model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
350
+ "llm.model.layers.9.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
351
+ "llm.model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
352
+ "llm.model.norm.weight": "model-00001-of-00002.safetensors",
353
+ "vit.preprocessor.patchifier.norm.weight": "model-00001-of-00002.safetensors",
354
+ "vit.preprocessor.patchifier.proj.bias": "model-00001-of-00002.safetensors",
355
+ "vit.preprocessor.patchifier.proj.weight": "model-00001-of-00002.safetensors",
356
+ "vit.preprocessor.pos_embed": "model-00001-of-00002.safetensors",
357
+ "vit.trunk.blocks.0.attn.proj.weight": "model-00001-of-00002.safetensors",
358
+ "vit.trunk.blocks.0.attn.qkv.weight": "model-00001-of-00002.safetensors",
359
+ "vit.trunk.blocks.0.mlp.fc1.weight": "model-00001-of-00002.safetensors",
360
+ "vit.trunk.blocks.0.mlp.fc2.weight": "model-00001-of-00002.safetensors",
361
+ "vit.trunk.blocks.0.mlp.fc3.weight": "model-00001-of-00002.safetensors",
362
+ "vit.trunk.blocks.0.norm_1.weight": "model-00001-of-00002.safetensors",
363
+ "vit.trunk.blocks.0.norm_2.weight": "model-00001-of-00002.safetensors",
364
+ "vit.trunk.blocks.1.attn.proj.weight": "model-00001-of-00002.safetensors",
365
+ "vit.trunk.blocks.1.attn.qkv.weight": "model-00001-of-00002.safetensors",
366
+ "vit.trunk.blocks.1.mlp.fc1.weight": "model-00001-of-00002.safetensors",
367
+ "vit.trunk.blocks.1.mlp.fc2.weight": "model-00001-of-00002.safetensors",
368
+ "vit.trunk.blocks.1.mlp.fc3.weight": "model-00001-of-00002.safetensors",
369
+ "vit.trunk.blocks.1.norm_1.weight": "model-00001-of-00002.safetensors",
370
+ "vit.trunk.blocks.1.norm_2.weight": "model-00001-of-00002.safetensors",
371
+ "vit.trunk.blocks.10.attn.proj.weight": "model-00001-of-00002.safetensors",
372
+ "vit.trunk.blocks.10.attn.qkv.weight": "model-00001-of-00002.safetensors",
373
+ "vit.trunk.blocks.10.mlp.fc1.weight": "model-00001-of-00002.safetensors",
374
+ "vit.trunk.blocks.10.mlp.fc2.weight": "model-00001-of-00002.safetensors",
375
+ "vit.trunk.blocks.10.mlp.fc3.weight": "model-00001-of-00002.safetensors",
376
+ "vit.trunk.blocks.10.norm_1.weight": "model-00001-of-00002.safetensors",
377
+ "vit.trunk.blocks.10.norm_2.weight": "model-00001-of-00002.safetensors",
378
+ "vit.trunk.blocks.11.attn.proj.weight": "model-00001-of-00002.safetensors",
379
+ "vit.trunk.blocks.11.attn.qkv.weight": "model-00001-of-00002.safetensors",
380
+ "vit.trunk.blocks.11.mlp.fc1.weight": "model-00001-of-00002.safetensors",
381
+ "vit.trunk.blocks.11.mlp.fc2.weight": "model-00001-of-00002.safetensors",
382
+ "vit.trunk.blocks.11.mlp.fc3.weight": "model-00001-of-00002.safetensors",
383
+ "vit.trunk.blocks.11.norm_1.weight": "model-00001-of-00002.safetensors",
384
+ "vit.trunk.blocks.11.norm_2.weight": "model-00001-of-00002.safetensors",
385
+ "vit.trunk.blocks.12.attn.proj.weight": "model-00001-of-00002.safetensors",
386
+ "vit.trunk.blocks.12.attn.qkv.weight": "model-00001-of-00002.safetensors",
387
+ "vit.trunk.blocks.12.mlp.fc1.weight": "model-00001-of-00002.safetensors",
388
+ "vit.trunk.blocks.12.mlp.fc2.weight": "model-00001-of-00002.safetensors",
389
+ "vit.trunk.blocks.12.mlp.fc3.weight": "model-00001-of-00002.safetensors",
390
+ "vit.trunk.blocks.12.norm_1.weight": "model-00001-of-00002.safetensors",
391
+ "vit.trunk.blocks.12.norm_2.weight": "model-00001-of-00002.safetensors",
392
+ "vit.trunk.blocks.13.attn.proj.weight": "model-00001-of-00002.safetensors",
393
+ "vit.trunk.blocks.13.attn.qkv.weight": "model-00001-of-00002.safetensors",
394
+ "vit.trunk.blocks.13.mlp.fc1.weight": "model-00001-of-00002.safetensors",
395
+ "vit.trunk.blocks.13.mlp.fc2.weight": "model-00001-of-00002.safetensors",
396
+ "vit.trunk.blocks.13.mlp.fc3.weight": "model-00001-of-00002.safetensors",
397
+ "vit.trunk.blocks.13.norm_1.weight": "model-00001-of-00002.safetensors",
398
+ "vit.trunk.blocks.13.norm_2.weight": "model-00001-of-00002.safetensors",
399
+ "vit.trunk.blocks.14.attn.proj.weight": "model-00001-of-00002.safetensors",
400
+ "vit.trunk.blocks.14.attn.qkv.weight": "model-00001-of-00002.safetensors",
401
+ "vit.trunk.blocks.14.mlp.fc1.weight": "model-00001-of-00002.safetensors",
402
+ "vit.trunk.blocks.14.mlp.fc2.weight": "model-00001-of-00002.safetensors",
403
+ "vit.trunk.blocks.14.mlp.fc3.weight": "model-00001-of-00002.safetensors",
404
+ "vit.trunk.blocks.14.norm_1.weight": "model-00001-of-00002.safetensors",
405
+ "vit.trunk.blocks.14.norm_2.weight": "model-00001-of-00002.safetensors",
406
+ "vit.trunk.blocks.15.attn.proj.weight": "model-00001-of-00002.safetensors",
407
+ "vit.trunk.blocks.15.attn.qkv.weight": "model-00001-of-00002.safetensors",
408
+ "vit.trunk.blocks.15.mlp.fc1.weight": "model-00001-of-00002.safetensors",
409
+ "vit.trunk.blocks.15.mlp.fc2.weight": "model-00001-of-00002.safetensors",
410
+ "vit.trunk.blocks.15.mlp.fc3.weight": "model-00001-of-00002.safetensors",
411
+ "vit.trunk.blocks.15.norm_1.weight": "model-00001-of-00002.safetensors",
412
+ "vit.trunk.blocks.15.norm_2.weight": "model-00001-of-00002.safetensors",
413
+ "vit.trunk.blocks.16.attn.proj.weight": "model-00001-of-00002.safetensors",
414
+ "vit.trunk.blocks.16.attn.qkv.weight": "model-00001-of-00002.safetensors",
415
+ "vit.trunk.blocks.16.mlp.fc1.weight": "model-00001-of-00002.safetensors",
416
+ "vit.trunk.blocks.16.mlp.fc2.weight": "model-00001-of-00002.safetensors",
417
+ "vit.trunk.blocks.16.mlp.fc3.weight": "model-00001-of-00002.safetensors",
418
+ "vit.trunk.blocks.16.norm_1.weight": "model-00001-of-00002.safetensors",
419
+ "vit.trunk.blocks.16.norm_2.weight": "model-00001-of-00002.safetensors",
420
+ "vit.trunk.blocks.17.attn.proj.weight": "model-00001-of-00002.safetensors",
421
+ "vit.trunk.blocks.17.attn.qkv.weight": "model-00001-of-00002.safetensors",
422
+ "vit.trunk.blocks.17.mlp.fc1.weight": "model-00001-of-00002.safetensors",
423
+ "vit.trunk.blocks.17.mlp.fc2.weight": "model-00001-of-00002.safetensors",
424
+ "vit.trunk.blocks.17.mlp.fc3.weight": "model-00001-of-00002.safetensors",
425
+ "vit.trunk.blocks.17.norm_1.weight": "model-00001-of-00002.safetensors",
426
+ "vit.trunk.blocks.17.norm_2.weight": "model-00001-of-00002.safetensors",
427
+ "vit.trunk.blocks.18.attn.proj.weight": "model-00001-of-00002.safetensors",
428
+ "vit.trunk.blocks.18.attn.qkv.weight": "model-00001-of-00002.safetensors",
429
+ "vit.trunk.blocks.18.mlp.fc1.weight": "model-00001-of-00002.safetensors",
430
+ "vit.trunk.blocks.18.mlp.fc2.weight": "model-00001-of-00002.safetensors",
431
+ "vit.trunk.blocks.18.mlp.fc3.weight": "model-00001-of-00002.safetensors",
432
+ "vit.trunk.blocks.18.norm_1.weight": "model-00001-of-00002.safetensors",
433
+ "vit.trunk.blocks.18.norm_2.weight": "model-00001-of-00002.safetensors",
434
+ "vit.trunk.blocks.19.attn.proj.weight": "model-00001-of-00002.safetensors",
435
+ "vit.trunk.blocks.19.attn.qkv.weight": "model-00001-of-00002.safetensors",
436
+ "vit.trunk.blocks.19.mlp.fc1.weight": "model-00001-of-00002.safetensors",
437
+ "vit.trunk.blocks.19.mlp.fc2.weight": "model-00001-of-00002.safetensors",
438
+ "vit.trunk.blocks.19.mlp.fc3.weight": "model-00001-of-00002.safetensors",
439
+ "vit.trunk.blocks.19.norm_1.weight": "model-00001-of-00002.safetensors",
440
+ "vit.trunk.blocks.19.norm_2.weight": "model-00001-of-00002.safetensors",
441
+ "vit.trunk.blocks.2.attn.proj.weight": "model-00001-of-00002.safetensors",
442
+ "vit.trunk.blocks.2.attn.qkv.weight": "model-00001-of-00002.safetensors",
443
+ "vit.trunk.blocks.2.mlp.fc1.weight": "model-00001-of-00002.safetensors",
444
+ "vit.trunk.blocks.2.mlp.fc2.weight": "model-00001-of-00002.safetensors",
445
+ "vit.trunk.blocks.2.mlp.fc3.weight": "model-00001-of-00002.safetensors",
446
+ "vit.trunk.blocks.2.norm_1.weight": "model-00001-of-00002.safetensors",
447
+ "vit.trunk.blocks.2.norm_2.weight": "model-00001-of-00002.safetensors",
448
+ "vit.trunk.blocks.20.attn.proj.weight": "model-00001-of-00002.safetensors",
449
+ "vit.trunk.blocks.20.attn.qkv.weight": "model-00001-of-00002.safetensors",
450
+ "vit.trunk.blocks.20.mlp.fc1.weight": "model-00001-of-00002.safetensors",
451
+ "vit.trunk.blocks.20.mlp.fc2.weight": "model-00001-of-00002.safetensors",
452
+ "vit.trunk.blocks.20.mlp.fc3.weight": "model-00001-of-00002.safetensors",
453
+ "vit.trunk.blocks.20.norm_1.weight": "model-00001-of-00002.safetensors",
454
+ "vit.trunk.blocks.20.norm_2.weight": "model-00001-of-00002.safetensors",
455
+ "vit.trunk.blocks.21.attn.proj.weight": "model-00001-of-00002.safetensors",
456
+ "vit.trunk.blocks.21.attn.qkv.weight": "model-00001-of-00002.safetensors",
457
+ "vit.trunk.blocks.21.mlp.fc1.weight": "model-00001-of-00002.safetensors",
458
+ "vit.trunk.blocks.21.mlp.fc2.weight": "model-00001-of-00002.safetensors",
459
+ "vit.trunk.blocks.21.mlp.fc3.weight": "model-00001-of-00002.safetensors",
460
+ "vit.trunk.blocks.21.norm_1.weight": "model-00001-of-00002.safetensors",
461
+ "vit.trunk.blocks.21.norm_2.weight": "model-00001-of-00002.safetensors",
462
+ "vit.trunk.blocks.22.attn.proj.weight": "model-00001-of-00002.safetensors",
463
+ "vit.trunk.blocks.22.attn.qkv.weight": "model-00001-of-00002.safetensors",
464
+ "vit.trunk.blocks.22.mlp.fc1.weight": "model-00001-of-00002.safetensors",
465
+ "vit.trunk.blocks.22.mlp.fc2.weight": "model-00001-of-00002.safetensors",
466
+ "vit.trunk.blocks.22.mlp.fc3.weight": "model-00001-of-00002.safetensors",
467
+ "vit.trunk.blocks.22.norm_1.weight": "model-00001-of-00002.safetensors",
468
+ "vit.trunk.blocks.22.norm_2.weight": "model-00001-of-00002.safetensors",
469
+ "vit.trunk.blocks.23.attn.proj.weight": "model-00001-of-00002.safetensors",
470
+ "vit.trunk.blocks.23.attn.qkv.weight": "model-00001-of-00002.safetensors",
471
+ "vit.trunk.blocks.23.mlp.fc1.weight": "model-00001-of-00002.safetensors",
472
+ "vit.trunk.blocks.23.mlp.fc2.weight": "model-00001-of-00002.safetensors",
473
+ "vit.trunk.blocks.23.mlp.fc3.weight": "model-00001-of-00002.safetensors",
474
+ "vit.trunk.blocks.23.norm_1.weight": "model-00001-of-00002.safetensors",
475
+ "vit.trunk.blocks.23.norm_2.weight": "model-00001-of-00002.safetensors",
476
+ "vit.trunk.blocks.3.attn.proj.weight": "model-00001-of-00002.safetensors",
477
+ "vit.trunk.blocks.3.attn.qkv.weight": "model-00001-of-00002.safetensors",
478
+ "vit.trunk.blocks.3.mlp.fc1.weight": "model-00001-of-00002.safetensors",
479
+ "vit.trunk.blocks.3.mlp.fc2.weight": "model-00001-of-00002.safetensors",
480
+ "vit.trunk.blocks.3.mlp.fc3.weight": "model-00001-of-00002.safetensors",
481
+ "vit.trunk.blocks.3.norm_1.weight": "model-00001-of-00002.safetensors",
482
+ "vit.trunk.blocks.3.norm_2.weight": "model-00001-of-00002.safetensors",
483
+ "vit.trunk.blocks.4.attn.proj.weight": "model-00001-of-00002.safetensors",
484
+ "vit.trunk.blocks.4.attn.qkv.weight": "model-00001-of-00002.safetensors",
485
+ "vit.trunk.blocks.4.mlp.fc1.weight": "model-00001-of-00002.safetensors",
486
+ "vit.trunk.blocks.4.mlp.fc2.weight": "model-00001-of-00002.safetensors",
487
+ "vit.trunk.blocks.4.mlp.fc3.weight": "model-00001-of-00002.safetensors",
488
+ "vit.trunk.blocks.4.norm_1.weight": "model-00001-of-00002.safetensors",
489
+ "vit.trunk.blocks.4.norm_2.weight": "model-00001-of-00002.safetensors",
490
+ "vit.trunk.blocks.5.attn.proj.weight": "model-00001-of-00002.safetensors",
491
+ "vit.trunk.blocks.5.attn.qkv.weight": "model-00001-of-00002.safetensors",
492
+ "vit.trunk.blocks.5.mlp.fc1.weight": "model-00001-of-00002.safetensors",
493
+ "vit.trunk.blocks.5.mlp.fc2.weight": "model-00001-of-00002.safetensors",
494
+ "vit.trunk.blocks.5.mlp.fc3.weight": "model-00001-of-00002.safetensors",
495
+ "vit.trunk.blocks.5.norm_1.weight": "model-00001-of-00002.safetensors",
496
+ "vit.trunk.blocks.5.norm_2.weight": "model-00001-of-00002.safetensors",
497
+ "vit.trunk.blocks.6.attn.proj.weight": "model-00001-of-00002.safetensors",
498
+ "vit.trunk.blocks.6.attn.qkv.weight": "model-00001-of-00002.safetensors",
499
+ "vit.trunk.blocks.6.mlp.fc1.weight": "model-00001-of-00002.safetensors",
500
+ "vit.trunk.blocks.6.mlp.fc2.weight": "model-00001-of-00002.safetensors",
501
+ "vit.trunk.blocks.6.mlp.fc3.weight": "model-00001-of-00002.safetensors",
502
+ "vit.trunk.blocks.6.norm_1.weight": "model-00001-of-00002.safetensors",
503
+ "vit.trunk.blocks.6.norm_2.weight": "model-00001-of-00002.safetensors",
504
+ "vit.trunk.blocks.7.attn.proj.weight": "model-00001-of-00002.safetensors",
505
+ "vit.trunk.blocks.7.attn.qkv.weight": "model-00001-of-00002.safetensors",
506
+ "vit.trunk.blocks.7.mlp.fc1.weight": "model-00001-of-00002.safetensors",
507
+ "vit.trunk.blocks.7.mlp.fc2.weight": "model-00001-of-00002.safetensors",
508
+ "vit.trunk.blocks.7.mlp.fc3.weight": "model-00001-of-00002.safetensors",
509
+ "vit.trunk.blocks.7.norm_1.weight": "model-00001-of-00002.safetensors",
510
+ "vit.trunk.blocks.7.norm_2.weight": "model-00001-of-00002.safetensors",
511
+ "vit.trunk.blocks.8.attn.proj.weight": "model-00001-of-00002.safetensors",
512
+ "vit.trunk.blocks.8.attn.qkv.weight": "model-00001-of-00002.safetensors",
513
+ "vit.trunk.blocks.8.mlp.fc1.weight": "model-00001-of-00002.safetensors",
514
+ "vit.trunk.blocks.8.mlp.fc2.weight": "model-00001-of-00002.safetensors",
515
+ "vit.trunk.blocks.8.mlp.fc3.weight": "model-00001-of-00002.safetensors",
516
+ "vit.trunk.blocks.8.norm_1.weight": "model-00001-of-00002.safetensors",
517
+ "vit.trunk.blocks.8.norm_2.weight": "model-00001-of-00002.safetensors",
518
+ "vit.trunk.blocks.9.attn.proj.weight": "model-00001-of-00002.safetensors",
519
+ "vit.trunk.blocks.9.attn.qkv.weight": "model-00001-of-00002.safetensors",
520
+ "vit.trunk.blocks.9.mlp.fc1.weight": "model-00001-of-00002.safetensors",
521
+ "vit.trunk.blocks.9.mlp.fc2.weight": "model-00001-of-00002.safetensors",
522
+ "vit.trunk.blocks.9.mlp.fc3.weight": "model-00001-of-00002.safetensors",
523
+ "vit.trunk.blocks.9.norm_1.weight": "model-00001-of-00002.safetensors",
524
+ "vit.trunk.blocks.9.norm_2.weight": "model-00001-of-00002.safetensors",
525
+ "vit.trunk.post_trunk_norm.weight": "model-00001-of-00002.safetensors"
526
+ }
527
+ }
modeling_FlashVLDynamic.py ADDED
@@ -0,0 +1,392 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import math
3
+ import copy
4
+
5
+ import torch
6
+ import torch.nn.functional as F
7
+ from torch.nn import CrossEntropyLoss
8
+
9
+ from PIL import Image
10
+ from functools import partial
11
+ from typing import List, Optional, Tuple, Union, Dict
12
+ from dataclasses import dataclass
13
+
14
+ import transformers
15
+ from transformers.modeling_outputs import ModelOutput
16
+ from transformers.modeling_utils import PreTrainedModel
17
+ from transformers import AutoModelForCausalLM
18
+
19
+ from .processing_FlashVL import tokenizer_image_token_qwen
20
+ from .adapters import Adapter_AIM
21
+ from .mm_constants import IGNORE_INDEX, IMAGE_TOKEN_INDEX, DEFAULT_SLICE_START_TOKEN, DEFAULT_SLICE_END_TOKEN
22
+ from .utils_data import split_image_ur
23
+ from .configuration_FlashVLDynamic import FlashVLDynamicConfig
24
+ from .modeling_aimv2 import AIMv2Model
25
+
26
+ @dataclass
27
+ class FlashVLDynamicOutputWithPast(ModelOutput):
28
+ loss: Optional[torch.FloatTensor] = None
29
+ logits: torch.FloatTensor = None
30
+
31
+
32
+ class FlashVLDynamic(PreTrainedModel):
33
+ config_class = FlashVLDynamicConfig
34
+
35
+ def __init__(self, config):
36
+ super().__init__(config)
37
+ self.llm = AutoModelForCausalLM.from_config(config.llm_config, trust_remote_code=True)
38
+ self.vit = AIMv2Model(config.vision_config)
39
+ self.adp = Adapter_AIM(config)
40
+
41
+ self.image_token_num = config.image_token_num
42
+ self.image_size = config.vision_config.image_size
43
+ self.image_split = config.image_split
44
+
45
+ def merge_text_image_tokens(self, inputs, add_start_end=False):
46
+ input_ids, image_features, targets, attn_mask, loss_mask = inputs
47
+ micro_batch_size, tokens_len = input_ids.shape
48
+ device = input_ids.device
49
+
50
+ img_rows, img_cols = torch.where(input_ids == IMAGE_TOKEN_INDEX)
51
+ image_idxs = {i: [] for i in range(micro_batch_size)}
52
+ for row, col in zip(img_rows.tolist(), img_cols.tolist()):
53
+ image_idxs[row].append(col)
54
+ for row in range(micro_batch_size):
55
+ image_idxs[row] = sorted(image_idxs[row])
56
+
57
+ split_sizes = []
58
+ for row in range(micro_batch_size):
59
+ image_num = len(image_idxs[row])
60
+ if image_num == 0:
61
+ split_sizes.append(tokens_len)
62
+ continue
63
+
64
+ if image_idxs[row][0] != 0:
65
+ split_sizes.append(image_idxs[row][0])
66
+
67
+ for idx in range(image_num - 1):
68
+ split_sizes.append(self.image_token_num)
69
+ if image_idxs[row][idx + 1] > image_idxs[row][idx] + self.image_token_num:
70
+ split_sizes.append(image_idxs[row][idx + 1] - (image_idxs[row][idx] + self.image_token_num))
71
+
72
+ if image_idxs[row][image_num - 1] + self.image_token_num >= tokens_len:
73
+ split_sizes.append(tokens_len - image_idxs[row][image_num - 1])
74
+ else:
75
+ split_sizes.append(self.image_token_num)
76
+ split_sizes.append(tokens_len - (image_idxs[row][image_num - 1] + self.image_token_num))
77
+
78
+ input_ids_noim = torch.where(input_ids < 0, 151643, input_ids)
79
+ input_ids_noim = input_ids_noim.view(-1)
80
+ input_embeds = self.llm.model.embed_tokens(input_ids_noim)
81
+ input_embeds_split = torch.split(input_embeds, split_sizes, dim=0)
82
+
83
+ vl_embeds_list = []
84
+ cur_language_idx = 0
85
+ cur_image_idx = 0
86
+ for row in range(micro_batch_size):
87
+ image_num = len(image_idxs[row])
88
+ if image_num == 0:
89
+ vl_embeds_list.append(input_embeds_split[cur_language_idx])
90
+ cur_language_idx += 1
91
+ vl_embeds_list.append(image_features[cur_image_idx][0:0])
92
+ cur_image_idx += 1
93
+ continue
94
+
95
+ if image_idxs[row][0] != 0:
96
+ vl_embeds_list.append(input_embeds_split[cur_language_idx])
97
+ cur_language_idx += 1
98
+
99
+ for idx in range(image_num - 1):
100
+ vl_embeds_list.append(image_features[cur_image_idx])
101
+ cur_language_idx += 1
102
+ cur_image_idx += 1
103
+
104
+ if image_idxs[row][idx + 1] > image_idxs[row][idx] + self.image_token_num:
105
+ vl_embeds_list.append(input_embeds_split[cur_language_idx])
106
+ cur_language_idx += 1
107
+
108
+ if image_idxs[row][image_num - 1] + self.image_token_num >= tokens_len:
109
+ vl_embeds_list.append(image_features[cur_image_idx][0 : tokens_len - image_idxs[row][image_num - 1]])
110
+ cur_language_idx += 1
111
+ cur_image_idx += 1
112
+ else:
113
+ vl_embeds_list.append(image_features[cur_image_idx])
114
+ cur_language_idx += 1
115
+ cur_image_idx += 1
116
+ vl_embeds_list.append(input_embeds_split[cur_language_idx])
117
+ cur_language_idx += 1
118
+
119
+ vl_embeds = torch.cat(vl_embeds_list)
120
+ vl_embeds = vl_embeds.view(micro_batch_size, tokens_len, vl_embeds.shape[-1])
121
+ return (input_ids, vl_embeds, targets, attn_mask, loss_mask)
122
+
123
+ def forward(
124
+ self,
125
+ input_ids: torch.LongTensor = None,
126
+ pixel_values: torch.FloatTensor = None,
127
+ attention_mask: Optional[torch.Tensor] = None,
128
+ inputs_embeds: Optional[torch.FloatTensor] = None,
129
+ labels: Optional[torch.LongTensor] = None,
130
+ output_attentions: Optional[bool] = None,
131
+ output_hidden_states: Optional[bool] = None,
132
+ return_dict: Optional[bool] = None,
133
+ local_pos_batch: Optional[torch.LongTensor] = None,
134
+ image_idx_batch: Optional[torch.Tensor] = None,
135
+ loss_mask_batch: Optional[torch.Tensor] = None,
136
+ use_cache: Optional[bool] = None,
137
+ ):
138
+ inputs = [input_ids, pixel_values, labels, attention_mask, loss_mask_batch]
139
+
140
+ if isinstance(inputs[1], list):
141
+ pixel_values = [p.bfloat16() for p in inputs[1]]
142
+ else:
143
+ pixel_values = inputs[1].bfloat16()
144
+ img_token = self.vit.forward(pixel_values)
145
+
146
+ if hasattr(img_token, 'last_hidden_state'):
147
+ img_token = img_token.last_hidden_state
148
+
149
+ inputs = self.adp(inputs[:1]+[img_token]+inputs[2:])
150
+
151
+ inputs = self.merge_text_image_tokens(inputs)
152
+ tokens, hidden_states, targets, attn_mask, loss_mask = inputs
153
+
154
+ outputs = self.llm.forward(
155
+ inputs_embeds=hidden_states,
156
+ attention_mask=attn_mask,
157
+ use_cache=use_cache)
158
+
159
+ lm_logits = outputs.logits
160
+
161
+ loss = None
162
+ if targets is not None:
163
+ labels = targets.to(lm_logits.device)
164
+ shift_logits = lm_logits[..., :-1, :].contiguous()
165
+ shift_labels = labels[..., 1:].contiguous()
166
+
167
+ loss_fct = CrossEntropyLoss(reduction='none')
168
+ loss = loss_fct(
169
+ shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)
170
+ )
171
+
172
+ batch_size = labels.size(0)
173
+ loss_mask = loss_mask[:, 1:].to(loss.dtype)
174
+ loss = (loss.view(batch_size, -1) * loss_mask).sum() / loss_mask.sum()
175
+
176
+ return FlashVLDynamicOutputWithPast(
177
+ loss=loss,
178
+ logits=lm_logits,
179
+ )
180
+
181
+ def get_input_embeddings(self):
182
+ return self.llm.get_input_embeddings()
183
+
184
+ def split_image_minicpm(self, image):
185
+
186
+ splits, grid_shapes = split_image_ur(image, self.image_split, self.image_size, force_min_size=True)
187
+
188
+ prefix = ''
189
+ flatten_splits = [splits[0]] # global image
190
+ prefix += '<image>\n'
191
+ if len(splits) > 1:
192
+ prefix += DEFAULT_SLICE_START_TOKEN # slice starts
193
+ for i in range(1, len(splits)):
194
+ prefix += '<image>'
195
+ prefix += '\n'
196
+ flatten_splits += [splits[i]]
197
+ prefix += DEFAULT_SLICE_END_TOKEN # slice ends
198
+
199
+ return flatten_splits, prefix
200
+
201
+ def to_llava_format(self, data):
202
+ img_pil = data['img']
203
+ messages = data['messages']
204
+ text_only = data['text_only']
205
+ is_video=False
206
+ if 'is_video' in data:
207
+ is_video=data['is_video']
208
+ messages.append({'role': 'assistant', 'content': ''})
209
+ conversations = []
210
+ for i,m in enumerate(messages):
211
+ if m['role'] == 'user':
212
+ value = str(m['content']).replace('<image>', '')
213
+
214
+ if i == 0 and not text_only:
215
+ assert not isinstance(img_pil, list)
216
+ img_pil, prefix = self.split_image_minicpm(img_pil)
217
+ value = prefix + value
218
+
219
+ conversations.append({'from': 'human', 'value': value})
220
+ elif m['role'] == 'assistant':
221
+ conversations.append({'from': 'gpt', 'value': str(m['content']).replace('<image>', '')})
222
+ else:
223
+ raise ValueError(f"Wrong role in conversation. {m['role']}")
224
+ return {'image': img_pil,
225
+ 'text_only': text_only,
226
+ 'is_video':is_video,
227
+ 'conversations': conversations}
228
+
229
+ def generate(
230
+ self,
231
+ input_ids=None,
232
+ pixel_values=None,
233
+ attention_mask=None,
234
+ streamer=None,
235
+ **kwargs
236
+ ):
237
+ image = kwargs.get('image')
238
+ img_token = self.vit.forward(image.bfloat16())
239
+ if hasattr(img_token, 'last_hidden_state'):
240
+ img_token = img_token.last_hidden_state
241
+ inputs = self.adp((
242
+ input_ids.to(self.device),
243
+ img_token,
244
+ None, None, None))
245
+ inputs = self.merge_text_image_tokens(inputs)
246
+ tokens, hidden_states, targets, attn_mask, loss_mask = inputs
247
+
248
+ keys_to_pop = ['loss_mask', 'paddings','targets','attn_mask','image']
249
+ kwargs = {k: v for k, v in kwargs.items() if k not in keys_to_pop}
250
+ outputs = self.llm.generate(
251
+ inputs_embeds=hidden_states.bfloat16(),
252
+ max_new_tokens=2048,
253
+ do_sample=False,
254
+ **kwargs
255
+ )
256
+
257
+ return outputs
258
+
259
+ def chat(self, pil_image, messages, answer_prompt=None, do_sample=True, max_new_tokens=256):
260
+
261
+ data={}
262
+ data['img'] = pil_image
263
+ data['text_only'] = (pil_image is None)
264
+ data['messages'] = messages
265
+
266
+ sources = self.to_llava_format(data)
267
+ sources = [sources]
268
+ has_image = not sources[0]['text_only']
269
+
270
+ if has_image:
271
+ img_list = sources[0]['image']
272
+ if not isinstance(img_list, list):
273
+ img_list = [img_list]
274
+ image = torch.stack([torch.from_numpy(self.im_trans(i)['pixel_values'][0]) for i in img_list], dim=0)
275
+
276
+ sources = copy.deepcopy([e["conversations"] for e in sources])
277
+
278
+ data_dict = self.preprocess_qwen(
279
+ sources,
280
+ self.tokenizer,
281
+ has_image=has_image,
282
+ )
283
+
284
+ input_ids_data = data_dict["input_ids"][0]
285
+ data_dict["input_ids"] = [ input_ids_data, ]
286
+
287
+ if not has_image:
288
+ image = torch.zeros(1, 3, self.image_size, self.image_size)
289
+ data_dict = dict(tokens=data_dict["input_ids"][0],)
290
+
291
+ img_token = self.vit.forward(image.cuda().bfloat16())
292
+
293
+ if hasattr(img_token, 'last_hidden_state'):
294
+ img_token = img_token.last_hidden_state
295
+
296
+ inputs = self.adp((
297
+ data_dict['tokens'].unsqueeze(0).to(self.device),
298
+ img_token,
299
+ None, None, None))
300
+
301
+ inputs = self.merge_text_image_tokens(inputs)
302
+ tokens, hidden_states, targets, attn_mask, loss_mask = inputs
303
+
304
+ outputs = self.llm.generate(
305
+ inputs_embeds=hidden_states.bfloat16(),
306
+ return_dict_in_generate=False,
307
+ max_new_tokens=max_new_tokens,
308
+ do_sample=do_sample,
309
+ pad_token_id=False,
310
+ )
311
+ decoded = self.tokenizer.decode(outputs[0])
312
+
313
+ stop_words_ids = [self.llm.generation_config.bos_token_id,
314
+ self.llm.generation_config.eos_token_id,
315
+ self.tokenizer.convert_tokens_to_ids('<|im_start|>')]
316
+ stop_words = [self.tokenizer.decode(w) for w in stop_words_ids]
317
+
318
+ for stop_word in stop_words:
319
+ decoded = decoded.replace(stop_word, "").strip()
320
+
321
+ return decoded
322
+
323
+ def preprocess_qwen(
324
+ self,
325
+ sources,
326
+ tokenizer: transformers.PreTrainedTokenizer,
327
+ has_image: bool = False,
328
+ max_len=2048,
329
+ system_message: str = "You are a helpful assistant.",) -> Dict:
330
+
331
+ roles = {"human": "user", "gpt": "assistant"}
332
+ tokenizer = copy.deepcopy(tokenizer)
333
+
334
+ tokenizer.add_tokens(["<image>"], special_tokens=True)
335
+ image_token_index = tokenizer.convert_tokens_to_ids("<image>")
336
+ im_start, im_end = tokenizer.additional_special_tokens_ids[:2]
337
+ # unmask_tokens = ["<|im_start|>", "<|im_start|>", "\n"]
338
+ unmask_tokens_idx = [198, im_start, im_end]
339
+ nl_tokens = tokenizer("\n").input_ids
340
+
341
+ chat_template = "{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}"
342
+ tokenizer.chat_template = chat_template
343
+
344
+ input_ids, targets = [], []
345
+ for i, source in enumerate(sources):
346
+ if roles[source[0]["from"]] != roles["human"]:
347
+ source = source[1:]
348
+ input_id, target = [], []
349
+
350
+ input_id += tokenizer.apply_chat_template([{"role" : "system", "content" : system_message}])
351
+ target += [IGNORE_INDEX] * len(input_id)
352
+ i=0
353
+ for conv in source:
354
+ try:
355
+ role = conv["role"]
356
+ content = conv["content"]
357
+ except:
358
+ role = conv["from"]
359
+ content = conv["value"]
360
+ role = roles.get(role, role)
361
+
362
+ if i==len(source)-1:
363
+ conv = [{"role" : role, "content" : content}]
364
+ encode_id = tokenizer.apply_chat_template(conv,add_generation_prompt=True)
365
+ else:
366
+ conv = [{"role" : role, "content" : content}]
367
+ encode_id = tokenizer.apply_chat_template(conv)
368
+ i=i+1
369
+ if image_token_index in encode_id:
370
+ encode_id = tokenizer_image_token_qwen(encode_id, tokenizer, image_token_index,image_token_num=self.image_token_num)
371
+
372
+ input_id += encode_id
373
+ if role in ["user", "system"]:
374
+ target += [IGNORE_INDEX] * len(encode_id)
375
+ else:
376
+ target += encode_id
377
+
378
+
379
+ assert len(input_id) == len(target), f"{len(input_id)} != {len(target)}"
380
+ for idx, encode_id in enumerate(input_id):
381
+ if encode_id in unmask_tokens_idx:
382
+ target[idx] = encode_id
383
+ if encode_id == image_token_index:
384
+ input_id[idx] = IMAGE_TOKEN_INDEX
385
+ input_ids.append(input_id)
386
+ targets.append(target)
387
+ input_ids = torch.tensor(input_ids, dtype=torch.long)
388
+ targets = torch.tensor(targets, dtype=torch.long)
389
+ return dict(
390
+ input_ids=input_ids,
391
+ labels=targets,
392
+ )
modeling_aimv2.py ADDED
@@ -0,0 +1,192 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Optional, Tuple, Union
2
+
3
+ import torch
4
+ from .configuration_aimv2 import AIMv2Config
5
+ from torch import nn
6
+ from torch.nn import functional as F
7
+ from transformers.modeling_outputs import BaseModelOutputWithNoAttention
8
+ from transformers.modeling_utils import PreTrainedModel
9
+
10
+ __all__ = ["AIMv2Model"]
11
+
12
+
13
+ class RMSNorm(nn.Module):
14
+ def __init__(self, dim: int, eps: float = 1e-6):
15
+ super().__init__()
16
+ self.weight = nn.Parameter(torch.ones(dim))
17
+ self.eps = eps
18
+
19
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
20
+ output = self._norm(x.float()).type_as(x)
21
+ return output * self.weight
22
+
23
+ def extra_repr(self) -> str:
24
+ return f"{tuple(self.weight.shape)}, eps={self.eps}"
25
+
26
+ def _norm(self, x: torch.Tensor) -> torch.Tensor:
27
+ return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
28
+
29
+
30
+ class AIMv2SwiGLUFFN(nn.Module):
31
+ def __init__(self, config: AIMv2Config):
32
+ super().__init__()
33
+ hidden_features = config.intermediate_size
34
+ in_features = config.hidden_size
35
+ bias = config.use_bias
36
+
37
+ self.fc1 = nn.Linear(in_features, hidden_features, bias=bias)
38
+ self.fc2 = nn.Linear(hidden_features, in_features, bias=bias)
39
+ self.fc3 = nn.Linear(in_features, hidden_features, bias=bias)
40
+
41
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
42
+ x = F.silu(self.fc1(x)) * self.fc3(x)
43
+ x = self.fc2(x)
44
+ return x
45
+
46
+
47
+ class AIMv2PatchEmbed(nn.Module):
48
+ def __init__(self, config: AIMv2Config):
49
+ super().__init__()
50
+ self.proj = nn.Conv2d(
51
+ config.num_channels,
52
+ config.hidden_size,
53
+ kernel_size=(config.patch_size, config.patch_size),
54
+ stride=(config.patch_size, config.patch_size),
55
+ )
56
+ self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
57
+
58
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
59
+ x = self.proj(x).flatten(2).transpose(1, 2)
60
+ x = self.norm(x)
61
+ return x
62
+
63
+
64
+ class AIMv2ViTPreprocessor(nn.Module):
65
+ def __init__(self, config: AIMv2Config):
66
+ super().__init__()
67
+ num_patches = (config.image_size // config.patch_size) ** 2
68
+
69
+ self.patchifier = AIMv2PatchEmbed(config)
70
+ self.pos_embed = nn.Parameter(torch.zeros((1, num_patches, config.hidden_size)))
71
+
72
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
73
+ tokens = self.patchifier(x)
74
+ _, N, _ = tokens.shape
75
+ pos_embed = self.pos_embed.to(tokens.device)
76
+ tokens = tokens + pos_embed[:, :N]
77
+ return tokens
78
+
79
+
80
+ class AIMv2Attention(nn.Module):
81
+ def __init__(self, config: AIMv2Config):
82
+ super().__init__()
83
+ dim = config.hidden_size
84
+
85
+ self.num_heads = config.num_attention_heads
86
+ self.qkv = nn.Linear(dim, dim * 3, bias=config.qkv_bias)
87
+ self.attn_drop = nn.Dropout(config.attention_dropout)
88
+ self.proj = nn.Linear(dim, dim, bias=config.use_bias)
89
+ self.proj_drop = nn.Dropout(config.projection_dropout)
90
+
91
+ def forward(
92
+ self, x: torch.Tensor, mask: Optional[torch.Tensor] = None
93
+ ) -> torch.Tensor:
94
+ B, N, C = x.shape
95
+ qkv = (
96
+ self.qkv(x)
97
+ .reshape(B, N, 3, self.num_heads, C // self.num_heads)
98
+ .permute(2, 0, 3, 1, 4)
99
+ )
100
+ q, k, v = qkv.unbind(0)
101
+
102
+ x = F.scaled_dot_product_attention(q, k, v, attn_mask=mask)
103
+ x = x.transpose(1, 2).contiguous().reshape(B, N, C)
104
+ x = self.proj(x)
105
+ x = self.proj_drop(x)
106
+ return x
107
+
108
+
109
+ class AIMv2Block(nn.Module):
110
+ def __init__(self, config: AIMv2Config):
111
+ super().__init__()
112
+ self.attn = AIMv2Attention(config)
113
+ self.norm_1 = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
114
+ self.mlp = AIMv2SwiGLUFFN(config)
115
+ self.norm_2 = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
116
+
117
+ def forward(
118
+ self, x: torch.Tensor, mask: Optional[torch.Tensor] = None
119
+ ) -> torch.Tensor:
120
+ x = x + self.attn(self.norm_1(x), mask)
121
+ x = x + self.mlp(self.norm_2(x))
122
+ return x
123
+
124
+
125
+ class AIMv2Transformer(nn.Module):
126
+ def __init__(self, config: AIMv2Config):
127
+ super().__init__()
128
+ self.blocks = nn.ModuleList(
129
+ [AIMv2Block(config) for _ in range(config.num_hidden_layers)]
130
+ )
131
+ self.post_trunk_norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
132
+
133
+ def forward(
134
+ self,
135
+ tokens: torch.Tensor,
136
+ mask: Optional[torch.Tensor] = None,
137
+ output_hidden_states: bool = False,
138
+ ) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, ...]]]:
139
+ hidden_states = () if output_hidden_states else None
140
+ for block in self.blocks:
141
+ tokens = block(tokens, mask)
142
+ if output_hidden_states:
143
+ hidden_states += (tokens,)
144
+ tokens = self.post_trunk_norm(tokens)
145
+ return tokens, hidden_states
146
+
147
+
148
+ class AIMv2PretrainedModel(PreTrainedModel):
149
+ config_class = AIMv2Config
150
+ base_model_prefix = "aimv2"
151
+ main_input_name = "pixel_values"
152
+ _no_split_modules = ["AIMv2ViTPreprocessor", "AIMv2Block"]
153
+ _supports_sdpa = True
154
+
155
+
156
+ class AIMv2Model(AIMv2PretrainedModel):
157
+ def __init__(self, config: AIMv2Config):
158
+ super().__init__(config)
159
+ self.preprocessor = AIMv2ViTPreprocessor(config)
160
+ self.trunk = AIMv2Transformer(config)
161
+
162
+ def forward(
163
+ self,
164
+ pixel_values: torch.Tensor,
165
+ mask: Optional[torch.Tensor] = None,
166
+ output_hidden_states: Optional[bool] = None,
167
+ return_dict: Optional[bool] = None,
168
+ ) -> Union[
169
+ Tuple[torch.Tensor],
170
+ Tuple[torch.Tensor, Tuple[torch.Tensor, ...]],
171
+ BaseModelOutputWithNoAttention,
172
+ ]:
173
+ if output_hidden_states is None:
174
+ output_hidden_states = self.config.output_hidden_states
175
+ if return_dict is None:
176
+ return_dict = self.config.use_return_dict
177
+
178
+ x = self.preprocessor(pixel_values)
179
+ x, hidden_states = self.trunk(
180
+ x, mask, output_hidden_states=output_hidden_states
181
+ )
182
+
183
+ if not return_dict:
184
+ res = (x,)
185
+ res += (hidden_states,) if output_hidden_states else ()
186
+ return res
187
+
188
+ return BaseModelOutputWithNoAttention(
189
+ last_hidden_state=x,
190
+ hidden_states=hidden_states,
191
+ )
192
+
preprocessor_config.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "crop_size": {
3
+ "height": 448,
4
+ "width": 448
5
+ },
6
+ "do_center_crop": true,
7
+ "do_convert_rgb": true,
8
+ "do_normalize": true,
9
+ "do_rescale": true,
10
+ "do_resize": true,
11
+ "image_mean": [
12
+ 0.48145466,
13
+ 0.4578275,
14
+ 0.40821073
15
+ ],
16
+ "image_processor_type": "CLIPImageProcessor",
17
+ "image_std": [
18
+ 0.26862954,
19
+ 0.26130258,
20
+ 0.27577711
21
+ ],
22
+ "resample": 3,
23
+ "rescale_factor": 0.00392156862745098,
24
+ "size": {
25
+ "shortest_edge": 448
26
+ }
27
+ }
processing_FlashVL.py ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .mm_constants import IMAGE_TOKEN_INDEX, IMAGE_PAD_TOKEN_INDEX
2
+
3
+ def tokenizer_image_token_qwen(prompt, tokenizer, image_token_index, image_token_num=256):
4
+ prompt_chunks, tmp = [], []
5
+ for n in prompt:
6
+ if n == image_token_index:
7
+ prompt_chunks.append(tmp)
8
+ tmp = []
9
+ else:
10
+ tmp.append(n)
11
+ if tmp: prompt_chunks.append(tmp)
12
+
13
+ input_ids = []
14
+ for i, chunk in enumerate(prompt_chunks):
15
+ if i > 0:
16
+ input_ids.extend([IMAGE_TOKEN_INDEX] + [IMAGE_PAD_TOKEN_INDEX] * (image_token_num - 1))
17
+ input_ids.extend(chunk)
18
+
19
+ return input_ids
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,207 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|im_end|>",
201
+ "errors": "replace",
202
+ "model_max_length": 131072,
203
+ "pad_token": "<|endoftext|>",
204
+ "split_special_tokens": false,
205
+ "tokenizer_class": "Qwen2Tokenizer",
206
+ "unk_token": null
207
+ }
utils_data.py ADDED
@@ -0,0 +1,185 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import os
3
+ from PIL import Image
4
+ import numpy as np
5
+ import math
6
+ import torchvision.transforms.functional as F
7
+ from torchvision.transforms import InterpolationMode
8
+
9
+
10
+ def split_image_ur(img, max_slice_num, image_size, force_min_size=False):
11
+ if force_min_size:
12
+ img = resize_by_patch_size_ur(img, min_size= image_size, max_size= image_size * max_slice_num, patch_size=14)
13
+ slice_config = {
14
+ "max_slice_nums": max_slice_num,
15
+ "scale_resolution": image_size,
16
+ "patch_size": 14
17
+ }
18
+ source_image, sub_images, _ = do_slice_by_minicpmv_strategy_ur(
19
+ img, max_slice_nums=slice_config["max_slice_nums"], scale_resolution=slice_config["scale_resolution"], patch_size=slice_config["patch_size"])
20
+ splits = []
21
+ splits.append(source_image)
22
+ for i in range(len(sub_images)):
23
+ for j in range(len(sub_images[0])):
24
+ splits.append(sub_images[i][j])
25
+ sliced_images, sliced_shapes = [], []
26
+ for slice_image in splits:
27
+ sliced_images.append(slice_image)
28
+ sliced_shapes.append(np.array((slice_image.size[0] // slice_config["patch_size"], slice_image.size[1] // slice_config["patch_size"])))
29
+
30
+ return sliced_images, sliced_shapes
31
+
32
+ # Strategy: MiniCPM-V
33
+ def do_slice_by_minicpmv_strategy_ur(image, max_slice_nums=9, scale_resolution=1120, patch_size=14, never_split=False):
34
+
35
+ original_size = image.size
36
+ original_width, original_height = original_size
37
+ log_ratio = math.log(original_width / original_height)
38
+ ratio = original_width * original_height / (scale_resolution * scale_resolution)
39
+ multiple = min(math.ceil(ratio), max_slice_nums)
40
+
41
+ source_image = None
42
+ best_grid = None
43
+ patches = []
44
+
45
+ if multiple <= 1 or never_split:
46
+ # dont need to slice, upsample
47
+ # best_size = find_best_resize(
48
+ # original_size, scale_resolution, patch_size, allow_upscale=True
49
+ # )
50
+ best_size = (scale_resolution, scale_resolution)
51
+ source_image = image.resize(best_size, Image.BICUBIC)
52
+ else:
53
+ candidate_split_grids_nums = []
54
+ for i in [multiple - 1, multiple, multiple + 1]:
55
+ if i == 1 or i > max_slice_nums:
56
+ continue
57
+ candidate_split_grids_nums.append(i)
58
+
59
+ # source image, down-sampling and ensure divided by patch_size
60
+ # best_resize = find_best_resize(original_size, scale_resolution, patch_size)
61
+ # source_image = image.copy().resize(best_resize, Image.BICUBIC)
62
+ source_image = image.copy().resize((scale_resolution,scale_resolution), Image.BICUBIC)
63
+ candidate_grids = []
64
+
65
+ # find best grid
66
+ for split_grids_nums in candidate_split_grids_nums:
67
+ m = 1
68
+ while m <= split_grids_nums:
69
+ if split_grids_nums % m == 0:
70
+ candidate_grids.append([m, split_grids_nums // m])
71
+ m += 1
72
+ # print("candidate_grids: ", candidate_grids)
73
+
74
+ best_grid = [1, 1]
75
+ min_error = float("inf")
76
+ for grid in candidate_grids:
77
+ error = abs(log_ratio - math.log(grid[0] / grid[1]))
78
+ if error < min_error:
79
+ best_grid = grid
80
+ min_error = error
81
+
82
+ refine_size = get_refine_size(
83
+ original_size, best_grid, scale_resolution, patch_size, allow_upscale=True
84
+ )
85
+
86
+ refine_image = image.resize(refine_size, Image.BICUBIC)
87
+ patches = split_to_patches(refine_image, best_grid)
88
+
89
+ return source_image, patches, best_grid
90
+
91
+
92
+ def ensure_divide(length, patch_size):
93
+ return max(round(length / patch_size) * patch_size, patch_size)
94
+
95
+
96
+ def find_best_resize(original_size, scale_resolution, patch_size, allow_upscale=False):
97
+ width, height = original_size
98
+ if (width * height > scale_resolution * scale_resolution) or allow_upscale:
99
+ r = width / height
100
+ height = int(scale_resolution / math.sqrt(r))
101
+ width = int(height * r)
102
+ best_width = ensure_divide(width, patch_size)
103
+ best_height = ensure_divide(height, patch_size)
104
+
105
+ # print(best_width, best_height, scale_resolution)
106
+ while best_width * best_height > scale_resolution ** 2:
107
+ # print(best_width)
108
+ best_width -= patch_size
109
+
110
+ return (best_width, best_height)
111
+
112
+
113
+ def get_refine_size(original_size, grid, scale_resolution, patch_size, allow_upscale=False):
114
+ width, height = original_size
115
+ grid_x, grid_y = grid
116
+
117
+ # refine_width = ensure_divide(width, grid_x)
118
+ # refine_height = ensure_divide(height, grid_y)
119
+
120
+ # grid_width = refine_width / grid_x
121
+ # grid_height = refine_height / grid_y
122
+
123
+ # best_grid_size = find_best_resize(
124
+ # (grid_width, grid_height),
125
+ # scale_resolution,
126
+ # patch_size,
127
+ # allow_upscale=allow_upscale,
128
+ # )
129
+
130
+ refine_size = (scale_resolution * grid_x, scale_resolution * grid_y)
131
+
132
+ return refine_size
133
+
134
+
135
+ def split_to_patches(image, grid):
136
+ patches = []
137
+ width, height = image.size
138
+ grid_x = int(width / grid[0])
139
+ grid_y = int(height / grid[1])
140
+
141
+ for i in range(0, height, grid_y):
142
+ images = []
143
+ for j in range(0, width, grid_x):
144
+ box = (j, i, j + grid_x, i + grid_y)
145
+ patch = image.crop(box)
146
+ images.append(patch)
147
+ patches.append(images)
148
+
149
+ return patches
150
+
151
+ def resize_by_patch_size_ur(img, min_size=1152, max_size=2240, patch_size=14):
152
+ interpolation=InterpolationMode.BICUBIC
153
+ # min_size=756, max_size=756 * 4, patch_size=14
154
+ if isinstance(img, torch.Tensor):
155
+ height, width = img.shape[:2]
156
+ else:
157
+ width, height = img.size
158
+
159
+ # Check if the shorter side is less than min_size
160
+ if min(height, width) < min_size:
161
+ # print('less than min_size')
162
+ scale_factor = min_size / min(height, width)
163
+ new_height = max(min_size, round(height * scale_factor))
164
+ new_width = max(min_size, round(width * scale_factor))
165
+ # print(self.max_size)
166
+
167
+ # Check if the longer side after resizing is greater than max_size
168
+ if max(new_height, new_width) > max_size:
169
+ scale_factor = max_size / max(new_height, new_width)
170
+ new_height = min(max_size, round(new_height * scale_factor))
171
+ new_width = min(max_size, round(new_width * scale_factor))
172
+ else:
173
+ scale_factor = min(max_size / max(height, width), 1)
174
+ new_height = round(height * scale_factor)
175
+ new_width = round(width * scale_factor)
176
+
177
+ # # Make sure the new height and width are divisible by patch_size
178
+ # new_height = (new_height // patch_size) * patch_size
179
+ # new_width = (new_width // patch_size) * patch_size
180
+
181
+ # Resize the image
182
+ # img = F.resize(img, (new_height, new_width), interpolation)
183
+ img = img.resize((new_width, new_height), Image.BICUBIC)
184
+
185
+ return img
vocab.json ADDED
The diff for this file is too large to render. See raw diff