File size: 1,605 Bytes
ffc8576
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
---
license: apache-2.0
tags:
- physics
- diffusion-model
- quantum-information
- quantum-circuits
- genQC
---

# Schmidt-rank-vector generation 3 to 8 qubits

Paper: ["Quantum circuit synthesis with diffusion models"](https://arxiv.org/abs/2311.02041).

![](https://github.com/FlorianFuerrutter/genQC/blob/main/src/assets/inference.png?raw=true)


## Key Features and limitations

- Schmidt-rank-vector (SRV) generation from **3 to 8 qubits**
- Quantum circuits up to **52 gates**
- Training details in the [\[paper-arxiv\]](https://arxiv.org/abs/2311.02041)
- Prompt formatting: `prompt="Generate SRV: [2, 1, 2, 1, 2]"` 
- Gate set: `['h', 'cx']`

## Usage

The pre-trained model pipeline can be loaded with [`genQC`](https://github.com/FlorianFuerrutter/genQC). First install or upgrade [`genQC`](https://github.com/FlorianFuerrutter/genQC) using

``` sh
pip install -U genQC
```

Then the model can be loaded by calling

``` python
from genQC.pipeline.diffusion_pipeline import DiffusionPipeline
pipeline = DiffusionPipeline.from_pretrained("Floki00/qc_srv_3to8qubit", "cpu")
```

A guide on how to use this model can be found in the example notebook `0_hello_circuit`
  [\[doc\]](https://florianfuerrutter.github.io/genQC/examples/hello_circuit.html)
  [\[notebook\]](https://github.com/FlorianFuerrutter/genQC/blob/main/src/examples/0_hello_circuit.ipynb) on the GitHub repository of [`genQC`](https://github.com/FlorianFuerrutter/genQC).

## License

The model weights in this repository are licensed under the [Apache
License
2.0](https://github.com/FlorianFuerrutter/genQC/blob/main/LICENSE.txt).