File size: 1,559 Bytes
5b35880 18fad45 5b35880 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
# Usage
```
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
# Load model and tokenizer from the Hub
model_name = "FlukeTJ/wangchanberta-base-att-spm-uncased-finetuned-sentiment-cleaned-40k"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
# Set device (GPU if available, else CPU)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(device)
def predict_sentiment(text):
# Tokenize the input text
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512)
inputs = {k: v.to(device) for k, v in inputs.items()}
# Make prediction
with torch.no_grad():
outputs = model(**inputs)
# Get probabilities
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
# Get the predicted class
predicted_class = torch.argmax(probabilities, dim=1).item()
# Map class to sentiment
sentiment_map = {0: "Neutral", 1: "Positive", 2: "Negative"}
predicted_sentiment = sentiment_map[predicted_class]
# Get the confidence score
confidence = probabilities[0][predicted_class].item()
return predicted_sentiment, confidence
# Example usage
texts = [
"สุดยอดดด"
]
for text in texts:
sentiment, confidence = predict_sentiment(text)
print(f"Text: {text}")
print(f"Predicted Sentiment: {sentiment}")
print(f"Confidence: {confidence:.2f}")
print()
``` |