# Usage ``` from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch # Load model and tokenizer from the Hub model_name = "FlukeTJ/wangchanberta-base-att-spm-uncased-finetuned-sentiment-cleaned-40k" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name) # Set device (GPU if available, else CPU) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = model.to(device) def predict_sentiment(text): # Tokenize the input text inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512) inputs = {k: v.to(device) for k, v in inputs.items()} # Make prediction with torch.no_grad(): outputs = model(**inputs) # Get probabilities probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1) # Get the predicted class predicted_class = torch.argmax(probabilities, dim=1).item() # Map class to sentiment sentiment_map = {0: "Neutral", 1: "Positive", 2: "Negative"} predicted_sentiment = sentiment_map[predicted_class] # Get the confidence score confidence = probabilities[0][predicted_class].item() return predicted_sentiment, confidence # Example usage texts = [ "สุดยอดดด" ] for text in texts: sentiment, confidence = predict_sentiment(text) print(f"Text: {text}") print(f"Predicted Sentiment: {sentiment}") print(f"Confidence: {confidence:.2f}") print() ```