{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f0ea5b8acc0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652094354.6597269, "learning_rate": 0.003, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9ok3S8an76hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM1vvT1cZym6M8gduyGlYThlVzg78oyhOAAAgD8AAIA/jY/GPQmWWT4Lgo++NMGIvmiCHb6SFxK9AAAAAAAAAAAND989e8KhurLVaTzWMv61Dw+tOkMk9LQAAIA/AACAPxokRT3DERu69oUTvM68pjZ2BT47woYbtgAAgD8AAIA/WiOCPcPBcLrysMg7mlyTtuMJY7s+74y1AACAPwAAgD9NdgA9Kz6wPVNuij53P7C9VFn2PR78Tb0AAAAAAAAAAIBLxD3DIVC6KubBPL6orTv5S6a6ApCXvAAAgD8AAIA/AEPHva6bjbpepHO7a9EANtVnCbu3eYs6AACAPwAAgD/NMPW8FGaYulwkMbuecIQ3VEARu9We8TkAAIA/AACAP2YSm7zsSZ25SNPEOv+RfjbUei851WXkuQAAgD8AAIA/ADdLPcMZPbr5UQq8TXQ5N4XEXbraJKS2AACAPwAAgD8zsMQ9pFAeuQKAiDtnp8g2I6zpuim7n7oAAIA/AACAPxqcMz3D6SS62Gaau6m8w7bYGaw6e5SvOgAAgD8AAIA/JnSkPRSmjzn76D06ZLXHNaF5iDtKI2a5AACAPwAAgD+ac3W9PAkhPjGKCD4R7GK+0ZsOvUPEGrsAAAAAAAAAAE2r6D0pSAW6hhuou5b847guZ7A7hbwpOAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVcxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI4Ec17PdBYUCUhpRSlIwBbJRN6AOMAXSUR0CDoaUfxMFmdX2UKGgGaAloD0MICRfyCG4ZYUCUhpRSlGgVTegDaBZHQIOm8SbpeNV1fZQoaAZoCWgPQwgaho+IKbNfQJSGlFKUaBVN6ANoFkdAg6gb5M10knV9lChoBmgJaA9DCKHYCpqWcCzAlIaUUpRoFUuEaBZHQIO8LpTuOS51fZQoaAZoCWgPQwiTGARWDp1fQJSGlFKUaBVN6ANoFkdAg8zXRgJC0HV9lChoBmgJaA9DCGgIxyx7alpAlIaUUpRoFU3oA2gWR0CD04cwQDmsdX2UKGgGaAloD0MIJPHydC4mZECUhpRSlGgVTegDaBZHQIPV/EuQIUt1fZQoaAZoCWgPQwi8B+i+nLlgQJSGlFKUaBVN6ANoFkdAhDNbhm5DqnV9lChoBmgJaA9DCDOpoQ3AJE5AlIaUUpRoFU3oA2gWR0CEOivStvGZdX2UKGgGaAloD0MIeXjPgWVNZECUhpRSlGgVTegDaBZHQIQ6ZBu4wyt1fZQoaAZoCWgPQwj/kenQ6SteQJSGlFKUaBVN6ANoFkdAhEAJpN9H+nV9lChoBmgJaA9DCI53R8ZqLltAlIaUUpRoFU3oA2gWR0CETU7K7qY7dX2UKGgGaAloD0MI2T15WCgNY0CUhpRSlGgVTegDaBZHQIRTryFwkxB1fZQoaAZoCWgPQwiOeR1xyJhcQJSGlFKUaBVN6ANoFkdAhFUWx6fJ3nV9lChoBmgJaA9DCF7WxAJfnltAlIaUUpRoFU3oA2gWR0CEXNMxoIv8dX2UKGgGaAloD0MI2SQ/4lc0RECUhpRSlGgVS/NoFkdAhGBZU96kZnV9lChoBmgJaA9DCCjxuRPsh2ZAlIaUUpRoFU3oA2gWR0CEbTqdpZfVdX2UKGgGaAloD0MItcU1PpMwWkCUhpRSlGgVTegDaBZHQIR1Cs4ku6F1fZQoaAZoCWgPQwhIpkOn5+hjQJSGlFKUaBVN6ANoFkdAhIGKE384xXV9lChoBmgJaA9DCM1YNJ0dCWFAlIaUUpRoFU3oA2gWR0CEh+ZAprk9dX2UKGgGaAloD0MI3QvMCsWrZECUhpRSlGgVTegDaBZHQISeVlkH2RJ1fZQoaAZoCWgPQwhVFK+ytgFRwJSGlFKUaBVLkGgWR0CEodR6Ww/xdX2UKGgGaAloD0MIbXAi+rWhY0CUhpRSlGgVTegDaBZHQISv232EkB11fZQoaAZoCWgPQwjU8C2sm4hiQJSGlFKUaBVN6ANoFkdAhLcUmlZX+3V9lChoBmgJaA9DCOS/QBAgzlVAlIaUUpRoFU3oA2gWR0CEucPCEYfodX2UKGgGaAloD0MIm64nui4MJcCUhpRSlGgVS4toFkdAhMjN7rs0HnV9lChoBmgJaA9DCN2XM9sVXWNAlIaUUpRoFU3oA2gWR0CFG5JYDDCQdX2UKGgGaAloD0MI1UFeDyZQZUCUhpRSlGgVTegDaBZHQIUjZFiKBNF1fZQoaAZoCWgPQwh3SDFAorVfQJSGlFKUaBVN6ANoFkdAhSoTIFNcnnV9lChoBmgJaA9DCJI9Qs0QYWBAlIaUUpRoFU3oA2gWR0CFOjuIAOridX2UKGgGaAloD0MI9kArMGR7WECUhpRSlGgVTegDaBZHQIVB4Th5xBF1fZQoaAZoCWgPQwjYSuguCZtlQJSGlFKUaBVN6ANoFkdAhUORXnyNGXV9lChoBmgJaA9DCGFREaeTME5AlIaUUpRoFUu8aBZHQIVG8pG4I8h1fZQoaAZoCWgPQwg/cmvSbSxdQJSGlFKUaBVN6ANoFkdAhUwECNjslnV9lChoBmgJaA9DCE8eFmpNTl5AlIaUUpRoFU3oA2gWR0CFT7TBqKxcdX2UKGgGaAloD0MILcxCO6cPR0CUhpRSlGgVS+BoFkdAhVI3xvvSdHV9lChoBmgJaA9DCIaPiCmRlkVAlIaUUpRoFUulaBZHQIVcKN0eU6h1fZQoaAZoCWgPQwhSRlwAGlBbQJSGlFKUaBVN6ANoFkdAhVxWqDK5kXV9lChoBmgJaA9DCGwE4nX9sFNAlIaUUpRoFU3oA2gWR0CFY26nR9gGdX2UKGgGaAloD0MIZKw2/6/YVkCUhpRSlGgVTegDaBZHQIVu3zYmLLp1fZQoaAZoCWgPQwiefeVBemRhQJSGlFKUaBVN6ANoFkdAhYvIUahpQHV9lChoBmgJaA9DCOp5NxaU32FAlIaUUpRoFU3oA2gWR0CFj09Mbm2cdX2UKGgGaAloD0MIi2t8JvsNSkCUhpRSlGgVS95oFkdAhZaTErGzbHV9lChoBmgJaA9DCENU4c/w6mBAlIaUUpRoFU3oA2gWR0CFpAKBun/DdX2UKGgGaAloD0MITN2VXTDSWkCUhpRSlGgVTegDaBZHQIWmxG2Culp1fZQoaAZoCWgPQwjiP91AgXhfQJSGlFKUaBVN6ANoFkdAhbWMDW9UTHV9lChoBmgJaA9DCFlN1xPdsmBAlIaUUpRoFU3oA2gWR0CGBocjJMg2dX2UKGgGaAloD0MIvYv343YhZUCUhpRSlGgVTegDaBZHQIYlrgn+hoN1fZQoaAZoCWgPQwie8BKc+n5iQJSGlFKUaBVN6ANoFkdAhi96i0v4/XV9lChoBmgJaA9DCJaS5SSUHFdAlIaUUpRoFU3oA2gWR0CGMzwG4ZuRdX2UKGgGaAloD0MIgBE0ZhLCYECUhpRSlGgVTegDaBZHQIY4oxvegth1fZQoaAZoCWgPQwjBc+/hkr9kQJSGlFKUaBVN6ANoFkdAhjznlnyup3V9lChoBmgJaA9DCGNi83HtHWNAlIaUUpRoFU3oA2gWR0CGP7y4FzMidX2UKGgGaAloD0MI1ArT9xobX0CUhpRSlGgVTegDaBZHQIZJ6iZfD1p1fZQoaAZoCWgPQwgz3eukvlhkQJSGlFKUaBVN6ANoFkdAhkoX/Pw/gXV9lChoBmgJaA9DCJfhP93Ah2BAlIaUUpRoFU3oA2gWR0CGUP6+FlCkdX2UKGgGaAloD0MIMGe2K/ShF0CUhpRSlGgVS9BoFkdAhmobqQiiZnV9lChoBmgJaA9DCJVIopdRvlhAlIaUUpRoFU3oA2gWR0CGeOjL0SRKdX2UKGgGaAloD0MIea9amfChXECUhpRSlGgVTegDaBZHQIZ8cZzgdfd1fZQoaAZoCWgPQwgJwap6+YtgQJSGlFKUaBVN6ANoFkdAhoN9DQZ4wHV9lChoBmgJaA9DCJmDoKPVv2FAlIaUUpRoFU3oA2gWR0CGj76NVBD5dX2UKGgGaAloD0MIPFCnPLq7YECUhpRSlGgVTegDaBZHQIaSQjyFwkx1fZQoaAZoCWgPQwgo1qnyPaVjQJSGlFKUaBVN6ANoFkdAhqA06gdwN3V9lChoBmgJaA9DCNEeL6TDwGRAlIaUUpRoFU3oA2gWR0CG73YFqzqsdX2UKGgGaAloD0MIzxPP2QJuYkCUhpRSlGgVTegDaBZHQIcL5wbVBld1fZQoaAZoCWgPQwiimpKsw39mQJSGlFKUaBVN6ANoFkdAhxR752yLRHV9lChoBmgJaA9DCNjSo6me0DxAlIaUUpRoFU3oA2gWR0CHF/wo9cKPdX2UKGgGaAloD0MIH4MVp1pIXkCUhpRSlGgVTegDaBZHQIcc+sxO+Ix1fZQoaAZoCWgPQwhruMg9XbpWQJSGlFKUaBVN6ANoFkdAhyC6BZpztHV9lChoBmgJaA9DCHQLXYlAEGRAlIaUUpRoFU3oA2gWR0CHI0bkwN9ZdX2UKGgGaAloD0MILlT+tTwcYkCUhpRSlGgVTegDaBZHQIcsa+zt1IR1fZQoaAZoCWgPQwg4ZtmTwINmQJSGlFKUaBVN6ANoFkdAhzNaFmFrVXV9lChoBmgJaA9DCFsMHqZ9zl1AlIaUUpRoFU3oA2gWR0CHTKmTkhicdX2UKGgGaAloD0MITIqPT0i+YECUhpRSlGgVTegDaBZHQIdbE7r9l3B1fZQoaAZoCWgPQwiG4/kMqC9eQJSGlFKUaBVN6ANoFkdAh16Nh/iHZnV9lChoBmgJaA9DCNRDNLqDYVpAlIaUUpRoFU3oA2gWR0CHZSoESuhcdX2UKGgGaAloD0MIC2E1ljCbYECUhpRSlGgVTegDaBZHQIdwj/6wdKd1fZQoaAZoCWgPQwgZcmw9w5BkQJSGlFKUaBVN6ANoFkdAh3MGYrrgO3V9lChoBmgJaA9DCLKACdy6p1BAlIaUUpRoFUuzaBZHQId7JJkGzKN1fZQoaAZoCWgPQwi0d0ZbFVhjQJSGlFKUaBVN6ANoFkdAh4Cf9pAUtnV9lChoBmgJaA9DCKBsyhXeJF1AlIaUUpRoFU3oA2gWR0CHk66PKdQPdX2UKGgGaAloD0MI+x711ysoZkCUhpRSlGgVTegDaBZHQIfrV1W8yvd1fZQoaAZoCWgPQwhi3A2iNZlmQJSGlFKUaBVN6ANoFkdAh/TIVuaWonV9lChoBmgJaA9DCJMehlYnWUpAlIaUUpRoFUvcaBZHQIf3D4nF5v91fZQoaAZoCWgPQwg3M/rRcMNhQJSGlFKUaBVN6ANoFkdAh/iDsMRYinV9lChoBmgJaA9DCDgUPlsHg19AlIaUUpRoFU3oA2gWR0CH/Vl/6O5sdX2UKGgGaAloD0MIuvdwyXHxXUCUhpRSlGgVTegDaBZHQIgA/ZkCmuV1fZQoaAZoCWgPQwj0ixL0l7hhQJSGlFKUaBVN6ANoFkdAiANpZW7vonV9lChoBmgJaA9DCE1J1uHolGNAlIaUUpRoFU3oA2gWR0CIDMWOZLIxdX2UKGgGaAloD0MI4443+S0aQ0CUhpRSlGgVS7ZoFkdAiBBEzXSSeXV9lChoBmgJaA9DCLA9syTAyGNAlIaUUpRoFU3oA2gWR0CIE3ZvDP4VdX2UKGgGaAloD0MIwQDChxINQkCUhpRSlGgVS9ZoFkdAiB43rMTviXV9lChoBmgJaA9DCBU42QbuOV9AlIaUUpRoFU3oA2gWR0CIKWuSwGGEdX2UKGgGaAloD0MIu9QI/UwvZ0CUhpRSlGgVTegDaBZHQIg1b2OAAhl1fZQoaAZoCWgPQwhbejTVE/djQJSGlFKUaBVN6ANoFkdAiD8J1RtP6HV9lChoBmgJaA9DCF3DDI2n62JAlIaUUpRoFU3oA2gWR0CISi/5ckdFdX2UKGgGaAloD0MIJ4Oj5FV+YkCUhpRSlGgVTegDaBZHQIhMcse4kNZ1fZQoaAZoCWgPQwhzZOWXwVliQJSGlFKUaBVN6ANoFkdAiFPYixFAmnV9lChoBmgJaA9DCCZuFcRASmFAlIaUUpRoFU3oA2gWR0CIWLHGS6lMdX2UKGgGaAloD0MIW1653jZZUUCUhpRSlGgVS8doFkdAiFx4qXnhbXVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}