Upload PPO LunarLander-v2 trained agent
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 276.40 +/- 17.01
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb7e21bb200>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb7e21bb290>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb7e21bb320>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb7e21bb3b0>", "_build": "<function ActorCriticPolicy._build at 0x7fb7e21bb440>", "forward": "<function ActorCriticPolicy.forward at 0x7fb7e21bb4d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb7e21bb560>", "_predict": "<function ActorCriticPolicy._predict at 0x7fb7e21bb5f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb7e21bb680>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb7e21bb710>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb7e21bb7a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fb7e2188660>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651844725.0365632, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMYoYz7qfp0+6AwIvYmVC7/sXWg+/cP1vAAAAAAAAAAAADp2PPAFsD+gW6c9pDChvhhnRb0WEBC9AAAAAAAAAAAAgJO6xJRhPuJmDT6l0w2/9fQgPUoHOz4AAAAAAAAAALNcKr6Ur94+yH41PpZ8K7/o112+Ni1jPgAAAAAAAAAAZr72u/Z1Rbwe4SU+83UMvS+S5Lx+Wzc+AACAPwAAgD+AHQ69FLLUPVF1ij0XVK++BKuGPAl7MD0AAAAAAAAAAM0ApLyPrgq6CrDjOl52wLQ7g8u7XMAFugAAgD8AAIA/M2CuPBbeuT89SpM+FiQ6PrQ/xzvlVqM9AAAAAAAAAAAA4lY8xYOvPKOAjj763Sm+gjdgPk5sjL4AAAAAAACAP2YorrxgwYw/1trjvKDoO7+Lg/e9tvcKvgAAAAAAAAAAgMO/vTfDpT8T36e+7TH+vuW7cL5aemS+AAAAAAAAAABzrqQ+Eh8rP1KDsD6ieTC/UIG9PtY5uz0AAAAAAAAAAGPQuz4o1f0+vDWYvF8GTL/06Nk+2QO6OgAAAAAAAAAAjTS4PfhUsjy+ZnO+TWeLvsF44T2em329AAAAAAAAAACalm29oAK9PzKBGr9dXF8+44d7u/5dL74AAAAAAAAAAM0maTz9hRw8Gkn3vXzDLr4+7aI9A52HvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI4UGz694qckCUhpRSlIwBbJRLmYwBdJRHQLieCSg5BC51fZQoaAZoCWgPQwijj/mAwMFxQJSGlFKUaBVLqGgWR0C4nimJBPbgdX2UKGgGaAloD0MI/FOqRJnjcUCUhpRSlGgVS7FoFkdAuJ41DgIhQnV9lChoBmgJaA9DCIVE2safx3BAlIaUUpRoFUu5aBZHQLieO8m8dxR1fZQoaAZoCWgPQwhLcsCu5i1wQJSGlFKUaBVL0GgWR0C4nkzGYKIBdX2UKGgGaAloD0MIYaqZtdQLckCUhpRSlGgVS6doFkdAuJ5lfmcOLHV9lChoBmgJaA9DCKYPXVDfzHFAlIaUUpRoFUvkaBZHQLieh00FbFF1fZQoaAZoCWgPQwjThO0nI5ByQJSGlFKUaBVLyWgWR0C4nprhegL7dX2UKGgGaAloD0MInrRwWUUhc0CUhpRSlGgVS/xoFkdAuJ66BJ7LMnV9lChoBmgJaA9DCOc0C7T7VHJAlIaUUpRoFUu8aBZHQLievrxy4nZ1fZQoaAZoCWgPQwjikuNOqbtyQJSGlFKUaBVLx2gWR0C4nt36hxo7dX2UKGgGaAloD0MIKjkn9pDicECUhpRSlGgVS8JoFkdAuJ73HaN+9nV9lChoBmgJaA9DCNqrj4d+F3BAlIaUUpRoFUu1aBZHQLifMdq+Jxh1fZQoaAZoCWgPQwj7yoP0FF1zQJSGlFKUaBVLzGgWR0C4n1UEC/47dX2UKGgGaAloD0MIWr3D7VCCcUCUhpRSlGgVS8poFkdAuK3pkZrHl3V9lChoBmgJaA9DCJG28SdqMnBAlIaUUpRoFUusaBZHQLit6B/I8yN1fZQoaAZoCWgPQwg26EtvP5VxQJSGlFKUaBVLrGgWR0C4rfNzwMH9dX2UKGgGaAloD0MIGw5LA/9rc0CUhpRSlGgVTQgBaBZHQLiuEhq0tyx1fZQoaAZoCWgPQwgTYi6pmlZzQJSGlFKUaBVL4GgWR0C4rpZLdvbXdX2UKGgGaAloD0MIPQtCed8pcUCUhpRSlGgVS/BoFkdAuK6aCpWFOHV9lChoBmgJaA9DCGe610m9GHNAlIaUUpRoFUvPaBZHQLiusGDtgKF1fZQoaAZoCWgPQwgH7Gry1BdyQJSGlFKUaBVLzWgWR0C4rtPXkHUudX2UKGgGaAloD0MIlbpkHCNQcUCUhpRSlGgVS69oFkdAuK7WcnVoYnV9lChoBmgJaA9DCD+rzJRW5nBAlIaUUpRoFUvVaBZHQLiu36OYIB11fZQoaAZoCWgPQwizJhb4ivlyQJSGlFKUaBVL+mgWR0C4rvJpztCzdX2UKGgGaAloD0MIt9Jrs/FZc0CUhpRSlGgVTUcBaBZHQLivAJW/8EV1fZQoaAZoCWgPQwhINlfN8/pzQJSGlFKUaBVL1WgWR0C4rwYJAt4BdX2UKGgGaAloD0MI2QkvwamnckCUhpRSlGgVTTwBaBZHQLivHeP7vXt1fZQoaAZoCWgPQwjnGfuSDeRvQJSGlFKUaBVLmWgWR0C4ryAWrOqvdX2UKGgGaAloD0MIDK1OzlAEcUCUhpRSlGgVS7loFkdAuK9C6+WWyHV9lChoBmgJaA9DCP89eO0SNHJAlIaUUpRoFUvTaBZHQLivUnVG0/p1fZQoaAZoCWgPQwiU+rK0U3BxQJSGlFKUaBVLvWgWR0C4r2VKoQ4CdX2UKGgGaAloD0MI4Zo7+h+NcUCUhpRSlGgVS7NoFkdAuK9vgJkXlHV9lChoBmgJaA9DCLH34ot2XHJAlIaUUpRoFUuJaBZHQLivlSElE7Z1fZQoaAZoCWgPQwjjw+xlWxJzQJSGlFKUaBVL+mgWR0C4r8sQqZtvdX2UKGgGaAloD0MIoMTnTrARckCUhpRSlGgVS5toFkdAuK/OMju8b3V9lChoBmgJaA9DCFMEOL2LR3JAlIaUUpRoFUu3aBZHQLiv7aPS2IB1fZQoaAZoCWgPQwgjSnuDr4hyQJSGlFKUaBVLrGgWR0C4sA2YrrgPdX2UKGgGaAloD0MIwYwpWGPmckCUhpRSlGgVS6poFkdAuLAkUTL4e3V9lChoBmgJaA9DCNQLPs2JvnJAlIaUUpRoFUu+aBZHQLiwLct5D7Z1fZQoaAZoCWgPQwi/R/31SlVwQJSGlFKUaBVLsmgWR0C4sEAwwj+rdX2UKGgGaAloD0MIDQBV3Phfc0CUhpRSlGgVS9VoFkdAuLBg1ivxIHV9lChoBmgJaA9DCN3vUBRoaG9AlIaUUpRoFUuiaBZHQLiwarvsqrl1fZQoaAZoCWgPQwjGUiRfiXR0QJSGlFKUaBVL0WgWR0C4sH9pItlJdX2UKGgGaAloD0MIbOwS1dtgb0CUhpRSlGgVS+ZoFkdAuLDC+fywwHV9lChoBmgJaA9DCM2RlV+G+G5AlIaUUpRoFUvpaBZHQLiwy1JlJ6J1fZQoaAZoCWgPQwiUvhBy3lVwQJSGlFKUaBVLvmgWR0C4sNJg1FYudX2UKGgGaAloD0MI9iNFZBgXc0CUhpRSlGgVS81oFkdAuLDjadtl7XV9lChoBmgJaA9DCMHIy5oYpHJAlIaUUpRoFUvcaBZHQLiw6tyPuG91fZQoaAZoCWgPQwgwgsZMIg5zQJSGlFKUaBVLymgWR0C4sQ5HI6sAdX2UKGgGaAloD0MIOx3IeioockCUhpRSlGgVS5RoFkdAuLFVGiHqNnV9lChoBmgJaA9DCED7kSLyVXFAlIaUUpRoFUuvaBZHQLixawg1WKd1fZQoaAZoCWgPQwhYdOs1vWJyQJSGlFKUaBVL32gWR0C4sWofr8iwdX2UKGgGaAloD0MIXdxGAzhxckCUhpRSlGgVS85oFkdAuLFt5a/yoXV9lChoBmgJaA9DCHtP5bRnLnJAlIaUUpRoFUvhaBZHQLixcLl3hXN1fZQoaAZoCWgPQwgNq3gj87xxQJSGlFKUaBVLwmgWR0C4sXf+bVjJdX2UKGgGaAloD0MIxqcAGE/6bkCUhpRSlGgVS69oFkdAuLGoWj4593V9lChoBmgJaA9DCMx9chQgh3JAlIaUUpRoFUugaBZHQLixq9qDbrV1fZQoaAZoCWgPQwiPF9LhIW1wQJSGlFKUaBVLxmgWR0C4sdq+SKWLdX2UKGgGaAloD0MITfT5KGNTc0CUhpRSlGgVS/poFkdAuLH9o24usnV9lChoBmgJaA9DCN7IPPLHw3JAlIaUUpRoFUutaBZHQLiyEAOJ+Dx1fZQoaAZoCWgPQwjV7IFWoI1wQJSGlFKUaBVLqWgWR0C4shk1uR9xdX2UKGgGaAloD0MIKGGm7R9lcUCUhpRSlGgVS7toFkdAuLIi/L1VYXV9lChoBmgJaA9DCJHSbB6HgnNAlIaUUpRoFUvYaBZHQLiyTq6OHWV1fZQoaAZoCWgPQwglBRbAFHxwQJSGlFKUaBVLv2gWR0C4smhmkFfRdX2UKGgGaAloD0MI68VQTjTKckCUhpRSlGgVS9toFkdAuLJ2jCYTkHV9lChoBmgJaA9DCNUHkndO/3BAlIaUUpRoFUufaBZHQLiyiyzolld1fZQoaAZoCWgPQwjRrdf0IF1wQJSGlFKUaBVLnmgWR0C4sow5vLowdX2UKGgGaAloD0MIx9rf2d4gckCUhpRSlGgVS7JoFkdAuLKVjnV5KXV9lChoBmgJaA9DCCeloNtLhnJAlIaUUpRoFUu9aBZHQLiyvS1Vo6F1fZQoaAZoCWgPQwi0A64rJptyQJSGlFKUaBVL7GgWR0C4sxMZpBX0dX2UKGgGaAloD0MIfm/Tn/18c0CUhpRSlGgVS/5oFkdAuLNGj+Jgs3V9lChoBmgJaA9DCOS/QBBgQnFAlIaUUpRoFUu7aBZHQLizUhhpg1F1fZQoaAZoCWgPQwgw2uOF9GxzQJSGlFKUaBVL6mgWR0C4s1N9Ujs2dX2UKGgGaAloD0MIryR5rm9KcECUhpRSlGgVS9FoFkdAuLNYrAgxJ3V9lChoBmgJaA9DCDcawFugKXFAlIaUUpRoFUu8aBZHQLizcKh+OOt1fZQoaAZoCWgPQwhntcAeE8BxQJSGlFKUaBVLuWgWR0C4s3UBS1mbdX2UKGgGaAloD0MIqgoNxDKMcECUhpRSlGgVS6JoFkdAuLN4OJ+DvnV9lChoBmgJaA9DCJ+vWS6b8HNAlIaUUpRoFU0EAWgWR0C4s4RFd9lVdX2UKGgGaAloD0MI0IB6M2pjb0CUhpRSlGgVS6BoFkdAuLOwoMKCx3V9lChoBmgJaA9DCBBdUN/ymHBAlIaUUpRoFUukaBZHQLiztrU9ZA91fZQoaAZoCWgPQwi9OVyrPUhwQJSGlFKUaBVLpWgWR0C4s8QpWmxddX2UKGgGaAloD0MIBYwub04DckCUhpRSlGgVS8VoFkdAuLPNb5dnkHV9lChoBmgJaA9DCOXuc3z0RXRAlIaUUpRoFU0GAWgWR0C4s+XY6GQCdX2UKGgGaAloD0MITkLpC6FIcUCUhpRSlGgVS+hoFkdAuLQYmF8G93V9lChoBmgJaA9DCO/lPjlKQnNAlIaUUpRoFUvlaBZHQLi0XJI1+Ap1fZQoaAZoCWgPQwhxzLInAWVvQJSGlFKUaBVLoWgWR0C4tHVdTo+wdX2UKGgGaAloD0MIKXY0DvXrcUCUhpRSlGgVS65oFkdAuLSJpblijXV9lChoBmgJaA9DCEJD/wSXy3BAlIaUUpRoFUu3aBZHQLi0mZvUBn11fZQoaAZoCWgPQwjtm/urR49zQJSGlFKUaBVL1mgWR0C4tJiIcinpdX2UKGgGaAloD0MIjWDj+vcIcECUhpRSlGgVS6poFkdAuLSjqX4TK3V9lChoBmgJaA9DCEvmWN7VCnJAlIaUUpRoFUu0aBZHQLi0uirDIil1fZQoaAZoCWgPQwjCa5c23IFxQJSGlFKUaBVLr2gWR0C4tL8z2vjfdX2UKGgGaAloD0MIkga3tQWrcECUhpRSlGgVS9JoFkdAuLTCLwWnCXV9lChoBmgJaA9DCN1ELc0tDnNAlIaUUpRoFUulaBZHQLi06vXsgMd1fZQoaAZoCWgPQwgav/BKUtNwQJSGlFKUaBVLxmgWR0C4tRIMvyskdX2UKGgGaAloD0MIGhajrvVqcUCUhpRSlGgVS5BoFkdAuLUc1IiC8XV9lChoBmgJaA9DCJoK8Uh8+3FAlIaUUpRoFUvQaBZHQLi1KmCROlB1fZQoaAZoCWgPQwh1jgHZK41zQJSGlFKUaBVLy2gWR0C4tTkzCUHIdX2UKGgGaAloD0MIixh2GJMcckCUhpRSlGgVTQQBaBZHQLi1PlGPPs11ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1845, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 15, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dc84e622eb50949285b5b27058a7af76d80923b3c3afc5395691ca1a4670eb5c
|
3 |
+
size 143993
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fb7e21bb200>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb7e21bb290>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb7e21bb320>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb7e21bb3b0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fb7e21bb440>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fb7e21bb4d0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb7e21bb560>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fb7e21bb5f0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb7e21bb680>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb7e21bb710>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb7e21bb7a0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fb7e2188660>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 2015232,
|
46 |
+
"_total_timesteps": 2000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1651844725.0365632,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMYoYz7qfp0+6AwIvYmVC7/sXWg+/cP1vAAAAAAAAAAAADp2PPAFsD+gW6c9pDChvhhnRb0WEBC9AAAAAAAAAAAAgJO6xJRhPuJmDT6l0w2/9fQgPUoHOz4AAAAAAAAAALNcKr6Ur94+yH41PpZ8K7/o112+Ni1jPgAAAAAAAAAAZr72u/Z1Rbwe4SU+83UMvS+S5Lx+Wzc+AACAPwAAgD+AHQ69FLLUPVF1ij0XVK++BKuGPAl7MD0AAAAAAAAAAM0ApLyPrgq6CrDjOl52wLQ7g8u7XMAFugAAgD8AAIA/M2CuPBbeuT89SpM+FiQ6PrQ/xzvlVqM9AAAAAAAAAAAA4lY8xYOvPKOAjj763Sm+gjdgPk5sjL4AAAAAAACAP2YorrxgwYw/1trjvKDoO7+Lg/e9tvcKvgAAAAAAAAAAgMO/vTfDpT8T36e+7TH+vuW7cL5aemS+AAAAAAAAAABzrqQ+Eh8rP1KDsD6ieTC/UIG9PtY5uz0AAAAAAAAAAGPQuz4o1f0+vDWYvF8GTL/06Nk+2QO6OgAAAAAAAAAAjTS4PfhUsjy+ZnO+TWeLvsF44T2em329AAAAAAAAAACalm29oAK9PzKBGr9dXF8+44d7u/5dL74AAAAAAAAAAM0maTz9hRw8Gkn3vXzDLr4+7aI9A52HvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.007616000000000067,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVIxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI4UGz694qckCUhpRSlIwBbJRLmYwBdJRHQLieCSg5BC51fZQoaAZoCWgPQwijj/mAwMFxQJSGlFKUaBVLqGgWR0C4nimJBPbgdX2UKGgGaAloD0MI/FOqRJnjcUCUhpRSlGgVS7FoFkdAuJ41DgIhQnV9lChoBmgJaA9DCIVE2safx3BAlIaUUpRoFUu5aBZHQLieO8m8dxR1fZQoaAZoCWgPQwhLcsCu5i1wQJSGlFKUaBVL0GgWR0C4nkzGYKIBdX2UKGgGaAloD0MIYaqZtdQLckCUhpRSlGgVS6doFkdAuJ5lfmcOLHV9lChoBmgJaA9DCKYPXVDfzHFAlIaUUpRoFUvkaBZHQLieh00FbFF1fZQoaAZoCWgPQwjThO0nI5ByQJSGlFKUaBVLyWgWR0C4nprhegL7dX2UKGgGaAloD0MInrRwWUUhc0CUhpRSlGgVS/xoFkdAuJ66BJ7LMnV9lChoBmgJaA9DCOc0C7T7VHJAlIaUUpRoFUu8aBZHQLievrxy4nZ1fZQoaAZoCWgPQwjikuNOqbtyQJSGlFKUaBVLx2gWR0C4nt36hxo7dX2UKGgGaAloD0MIKjkn9pDicECUhpRSlGgVS8JoFkdAuJ73HaN+9nV9lChoBmgJaA9DCNqrj4d+F3BAlIaUUpRoFUu1aBZHQLifMdq+Jxh1fZQoaAZoCWgPQwj7yoP0FF1zQJSGlFKUaBVLzGgWR0C4n1UEC/47dX2UKGgGaAloD0MIWr3D7VCCcUCUhpRSlGgVS8poFkdAuK3pkZrHl3V9lChoBmgJaA9DCJG28SdqMnBAlIaUUpRoFUusaBZHQLit6B/I8yN1fZQoaAZoCWgPQwg26EtvP5VxQJSGlFKUaBVLrGgWR0C4rfNzwMH9dX2UKGgGaAloD0MIGw5LA/9rc0CUhpRSlGgVTQgBaBZHQLiuEhq0tyx1fZQoaAZoCWgPQwgTYi6pmlZzQJSGlFKUaBVL4GgWR0C4rpZLdvbXdX2UKGgGaAloD0MIPQtCed8pcUCUhpRSlGgVS/BoFkdAuK6aCpWFOHV9lChoBmgJaA9DCGe610m9GHNAlIaUUpRoFUvPaBZHQLiusGDtgKF1fZQoaAZoCWgPQwgH7Gry1BdyQJSGlFKUaBVLzWgWR0C4rtPXkHUudX2UKGgGaAloD0MIlbpkHCNQcUCUhpRSlGgVS69oFkdAuK7WcnVoYnV9lChoBmgJaA9DCD+rzJRW5nBAlIaUUpRoFUvVaBZHQLiu36OYIB11fZQoaAZoCWgPQwizJhb4ivlyQJSGlFKUaBVL+mgWR0C4rvJpztCzdX2UKGgGaAloD0MIt9Jrs/FZc0CUhpRSlGgVTUcBaBZHQLivAJW/8EV1fZQoaAZoCWgPQwhINlfN8/pzQJSGlFKUaBVL1WgWR0C4rwYJAt4BdX2UKGgGaAloD0MI2QkvwamnckCUhpRSlGgVTTwBaBZHQLivHeP7vXt1fZQoaAZoCWgPQwjnGfuSDeRvQJSGlFKUaBVLmWgWR0C4ryAWrOqvdX2UKGgGaAloD0MIDK1OzlAEcUCUhpRSlGgVS7loFkdAuK9C6+WWyHV9lChoBmgJaA9DCP89eO0SNHJAlIaUUpRoFUvTaBZHQLivUnVG0/p1fZQoaAZoCWgPQwiU+rK0U3BxQJSGlFKUaBVLvWgWR0C4r2VKoQ4CdX2UKGgGaAloD0MI4Zo7+h+NcUCUhpRSlGgVS7NoFkdAuK9vgJkXlHV9lChoBmgJaA9DCLH34ot2XHJAlIaUUpRoFUuJaBZHQLivlSElE7Z1fZQoaAZoCWgPQwjjw+xlWxJzQJSGlFKUaBVL+mgWR0C4r8sQqZtvdX2UKGgGaAloD0MIoMTnTrARckCUhpRSlGgVS5toFkdAuK/OMju8b3V9lChoBmgJaA9DCFMEOL2LR3JAlIaUUpRoFUu3aBZHQLiv7aPS2IB1fZQoaAZoCWgPQwgjSnuDr4hyQJSGlFKUaBVLrGgWR0C4sA2YrrgPdX2UKGgGaAloD0MIwYwpWGPmckCUhpRSlGgVS6poFkdAuLAkUTL4e3V9lChoBmgJaA9DCNQLPs2JvnJAlIaUUpRoFUu+aBZHQLiwLct5D7Z1fZQoaAZoCWgPQwi/R/31SlVwQJSGlFKUaBVLsmgWR0C4sEAwwj+rdX2UKGgGaAloD0MIDQBV3Phfc0CUhpRSlGgVS9VoFkdAuLBg1ivxIHV9lChoBmgJaA9DCN3vUBRoaG9AlIaUUpRoFUuiaBZHQLiwarvsqrl1fZQoaAZoCWgPQwjGUiRfiXR0QJSGlFKUaBVL0WgWR0C4sH9pItlJdX2UKGgGaAloD0MIbOwS1dtgb0CUhpRSlGgVS+ZoFkdAuLDC+fywwHV9lChoBmgJaA9DCM2RlV+G+G5AlIaUUpRoFUvpaBZHQLiwy1JlJ6J1fZQoaAZoCWgPQwiUvhBy3lVwQJSGlFKUaBVLvmgWR0C4sNJg1FYudX2UKGgGaAloD0MI9iNFZBgXc0CUhpRSlGgVS81oFkdAuLDjadtl7XV9lChoBmgJaA9DCMHIy5oYpHJAlIaUUpRoFUvcaBZHQLiw6tyPuG91fZQoaAZoCWgPQwgwgsZMIg5zQJSGlFKUaBVLymgWR0C4sQ5HI6sAdX2UKGgGaAloD0MIOx3IeioockCUhpRSlGgVS5RoFkdAuLFVGiHqNnV9lChoBmgJaA9DCED7kSLyVXFAlIaUUpRoFUuvaBZHQLixawg1WKd1fZQoaAZoCWgPQwhYdOs1vWJyQJSGlFKUaBVL32gWR0C4sWofr8iwdX2UKGgGaAloD0MIXdxGAzhxckCUhpRSlGgVS85oFkdAuLFt5a/yoXV9lChoBmgJaA9DCHtP5bRnLnJAlIaUUpRoFUvhaBZHQLixcLl3hXN1fZQoaAZoCWgPQwgNq3gj87xxQJSGlFKUaBVLwmgWR0C4sXf+bVjJdX2UKGgGaAloD0MIxqcAGE/6bkCUhpRSlGgVS69oFkdAuLGoWj4593V9lChoBmgJaA9DCMx9chQgh3JAlIaUUpRoFUugaBZHQLixq9qDbrV1fZQoaAZoCWgPQwiPF9LhIW1wQJSGlFKUaBVLxmgWR0C4sdq+SKWLdX2UKGgGaAloD0MITfT5KGNTc0CUhpRSlGgVS/poFkdAuLH9o24usnV9lChoBmgJaA9DCN7IPPLHw3JAlIaUUpRoFUutaBZHQLiyEAOJ+Dx1fZQoaAZoCWgPQwjV7IFWoI1wQJSGlFKUaBVLqWgWR0C4shk1uR9xdX2UKGgGaAloD0MIKGGm7R9lcUCUhpRSlGgVS7toFkdAuLIi/L1VYXV9lChoBmgJaA9DCJHSbB6HgnNAlIaUUpRoFUvYaBZHQLiyTq6OHWV1fZQoaAZoCWgPQwglBRbAFHxwQJSGlFKUaBVLv2gWR0C4smhmkFfRdX2UKGgGaAloD0MI68VQTjTKckCUhpRSlGgVS9toFkdAuLJ2jCYTkHV9lChoBmgJaA9DCNUHkndO/3BAlIaUUpRoFUufaBZHQLiyiyzolld1fZQoaAZoCWgPQwjRrdf0IF1wQJSGlFKUaBVLnmgWR0C4sow5vLowdX2UKGgGaAloD0MIx9rf2d4gckCUhpRSlGgVS7JoFkdAuLKVjnV5KXV9lChoBmgJaA9DCCeloNtLhnJAlIaUUpRoFUu9aBZHQLiyvS1Vo6F1fZQoaAZoCWgPQwi0A64rJptyQJSGlFKUaBVL7GgWR0C4sxMZpBX0dX2UKGgGaAloD0MIfm/Tn/18c0CUhpRSlGgVS/5oFkdAuLNGj+Jgs3V9lChoBmgJaA9DCOS/QBBgQnFAlIaUUpRoFUu7aBZHQLizUhhpg1F1fZQoaAZoCWgPQwgw2uOF9GxzQJSGlFKUaBVL6mgWR0C4s1N9Ujs2dX2UKGgGaAloD0MIryR5rm9KcECUhpRSlGgVS9FoFkdAuLNYrAgxJ3V9lChoBmgJaA9DCDcawFugKXFAlIaUUpRoFUu8aBZHQLizcKh+OOt1fZQoaAZoCWgPQwhntcAeE8BxQJSGlFKUaBVLuWgWR0C4s3UBS1mbdX2UKGgGaAloD0MIqgoNxDKMcECUhpRSlGgVS6JoFkdAuLN4OJ+DvnV9lChoBmgJaA9DCJ+vWS6b8HNAlIaUUpRoFU0EAWgWR0C4s4RFd9lVdX2UKGgGaAloD0MI0IB6M2pjb0CUhpRSlGgVS6BoFkdAuLOwoMKCx3V9lChoBmgJaA9DCBBdUN/ymHBAlIaUUpRoFUukaBZHQLiztrU9ZA91fZQoaAZoCWgPQwi9OVyrPUhwQJSGlFKUaBVLpWgWR0C4s8QpWmxddX2UKGgGaAloD0MIBYwub04DckCUhpRSlGgVS8VoFkdAuLPNb5dnkHV9lChoBmgJaA9DCOXuc3z0RXRAlIaUUpRoFU0GAWgWR0C4s+XY6GQCdX2UKGgGaAloD0MITkLpC6FIcUCUhpRSlGgVS+hoFkdAuLQYmF8G93V9lChoBmgJaA9DCO/lPjlKQnNAlIaUUpRoFUvlaBZHQLi0XJI1+Ap1fZQoaAZoCWgPQwhxzLInAWVvQJSGlFKUaBVLoWgWR0C4tHVdTo+wdX2UKGgGaAloD0MIKXY0DvXrcUCUhpRSlGgVS65oFkdAuLSJpblijXV9lChoBmgJaA9DCEJD/wSXy3BAlIaUUpRoFUu3aBZHQLi0mZvUBn11fZQoaAZoCWgPQwjtm/urR49zQJSGlFKUaBVL1mgWR0C4tJiIcinpdX2UKGgGaAloD0MIjWDj+vcIcECUhpRSlGgVS6poFkdAuLSjqX4TK3V9lChoBmgJaA9DCEvmWN7VCnJAlIaUUpRoFUu0aBZHQLi0uirDIil1fZQoaAZoCWgPQwjCa5c23IFxQJSGlFKUaBVLr2gWR0C4tL8z2vjfdX2UKGgGaAloD0MIkga3tQWrcECUhpRSlGgVS9JoFkdAuLTCLwWnCXV9lChoBmgJaA9DCN1ELc0tDnNAlIaUUpRoFUulaBZHQLi06vXsgMd1fZQoaAZoCWgPQwgav/BKUtNwQJSGlFKUaBVLxmgWR0C4tRIMvyskdX2UKGgGaAloD0MIGhajrvVqcUCUhpRSlGgVS5BoFkdAuLUc1IiC8XV9lChoBmgJaA9DCJoK8Uh8+3FAlIaUUpRoFUvQaBZHQLi1KmCROlB1fZQoaAZoCWgPQwh1jgHZK41zQJSGlFKUaBVLy2gWR0C4tTkzCUHIdX2UKGgGaAloD0MIixh2GJMcckCUhpRSlGgVTQQBaBZHQLi1PlGPPs11ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 1845,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 128,
|
86 |
+
"n_epochs": 15,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:025dc434926139e9b928a543f114b75905f785c2ac20b7db42d4afea992fe04b
|
3 |
+
size 84893
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e9f4961f44126c4384ced71fc05640a971e822929c272b1db7296a20361aa852
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0d2f8b14aeaa91b697d86f0ba32e55d73fb151d76ec61d10025c7cbe448c8cba
|
3 |
+
size 217698
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 276.4043421834741, "std_reward": 17.008105282504225, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-06T16:03:30.598942"}
|