File size: 4,002 Bytes
fe59873 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 |
---
license: apache-2.0
pipeline_tag: feature-extraction
---
# UniTok: A Unified Tokenizer for Visual Generation and Understanding
This repository contains UniTok, a unified visual tokenizer for both image generation and understanding tasks, as presented in [UniTok: A Unified Tokenizer for Visual Generation and Understanding](https://hf.co/papers/2502.20321).
Project Page: https://foundationvision.github.io/UniTok/
Code: https://github.com/FoundationVision/UniTok

UniTok encodes fine-grained details for generation and captures high-level semantics for understanding. It's compatible with autoregressive generative models (e.g., LlamaGen), multimodal understanding models (e.g., LLaVA), and unified MLLMs (e.g., Chameleon and Liquid).
Built upon UniTok, we construct an MLLM capable of both multimodal generation and understanding, which sets a new state-of-the-art among unified autoregressive MLLMs. The weights of our MLLM will be released soon.

## Performance
<table>
<thead>
<tr>
<th>Method</th>
<th>#Tokens</th>
<th>rFID ↓</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td colspan="4"><i>VQVAE Model</i></td>
</tr>
<tr align="center">
<td>VQ-GAN</td>
<td>256</td>
<td>4.98</td>
<td>--</td>
</tr>
<tr align="center">
<td>RQ-VAE</td>
<td>256</td>
<td>1.30</td>
<td>--</td>
</tr>
<tr align="center">
<td>VAR</td>
<td>680</td>
<td>0.90</td>
<td>--</td>
</tr>
<tr>
<td colspan="4"><i>CLIP Model</i></td>
</tr>
<tr align="center">
<td>CLIP</td>
<td>256</td>
<td>--</td>
<td>76.2</td>
</tr>
<tr align="center">
<td>SigLIP</td>
<td>256</td>
<td>--</td>
<td>80.5</td>
</tr>
<tr align="center">
<td>ViTamin</td>
<td>256</td>
<td>--</td>
<td>81.2</td>
</tr>
<tr>
<td colspan="4"><i>Unified Model</i></td>
</tr>
<tr align="center">
<td>TokenFlow †</td>
<td>680</td>
<td>1.37</td>
<td>--</td>
</tr>
<tr align="center">
<td>VILA-U †</td>
<td>256</td>
<td>1.80</td>
<td>73.3</td>
</tr>
<tr align="center">
<td>UniTok</td>
<td>256</td>
<td>0.39</td>
<td>70.5</td>
</tr>
<tr align="center">
<td>UniTok †</td>
<td>256</td>
<td>0.38</td>
<td>78.6</td>
</tr>
</tbody>
</table>
† indicates the model uses pretrained CLIP weights for initialization. Although CLIP weight initialization boosts ImageNet zero-shot accuracy,
we notice that random initialization leads to better downstream understanding performance.
We thus release the model checkpoint of UniTok that is trained from scratch.
## Model Weights
| Model | Res. | #Token | Code Shape | rFID | Checkpoint |
|:------------:|:----:|:------:|:-------------------------:|:----:|:------------:|
| UniTok-Large | 256 | 256 | 16 $\times$ 16 $\times$ 8 | 0.39 | [Download](https://huggingface.co/FoundationVision/UniTok/blob/main/unitok_tokenizer.pth) |
## Usage
(... rest of README content ...)
## Citation
```bibtex
@article{unitok,
title={UniTok: A Unified Tokenizer for Visual Generation and Understanding},
author={Ma, Chuofan and Jiang, Yi and Wu, Junfeng and Yang, Jihan and Yu, Xin and Yuan, Zehuan and Peng, Bingyue and Qi, Xiaojuan},
journal={arXiv preprint arXiv:2502.20321},
year={2025}
}
``` |