File size: 2,497 Bytes
bf37354 692b356 ccc8d8a 94b95f8 ccc8d8a 94b95f8 ccc8d8a 592738d ccc8d8a 592738d ccc8d8a 592738d ccc8d8a 592738d ccc8d8a 94b95f8 ccc8d8a 94b95f8 ccc8d8a 94b95f8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
license: apache-2.0
datasets:
- wikimedia/wikipedia
- SiberiaSoft/SiberianPersonaChat-2
language:
- ru
- en
metrics:
- mse
library_name: transformers
---
# FractalGPT/SberDistil
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search.
This is a fast and small model for solving the problem of determining the proximity between sentences, in the future we will reduce and speed it up. [Project](https://github.com/FractalGPT/ModelEmbedderDistilation)
<!--- Describe your model here -->
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
import numpy as np
from sentence_transformers import SentenceTransformer
```
```python
model = SentenceTransformer('FractalGPT/SberDistil')
def cos(x, y):
return np.dot(x, y)/(np.linalg.norm(x)*np.linalg.norm(y))
```
```python
text_1 = "Кто такой большой кот?"
text_2 = "Who is kitty?"
a = model.encode(text_1)
b = model.encode(text_2)
cos(a, b)
```
```
>>> 0.8072159157330788
```
## Training
* The original weights was taken from [cointegrated/rubert-tiny2](https://huggingface.co/cointegrated/rubert-tiny2).
* Training was conducted in two stages:
1. In the first stage, the model was trained on Wikipedia texts (4 million texts) for three epochs.
<img src="https://github.com/FractalGPT/ModelEmbedderDistilation/blob/main/DistilSBERT/Train/1_st_en.JPG?raw=true" width=700 />
3. In the second stage, training was conducted on Wikipedia, a dialog dataset, and NLI for one epoch.
<img src="https://github.com/FractalGPT/ModelEmbedderDistilation/blob/main/DistilSBERT/Train/2_st_en.JPG?raw=true" width=700 />
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 312, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
(2): Dense({'in_features': 312, 'out_features': 384, 'bias': True, 'activation_function': 'torch.nn.modules.linear.Identity'})
)
``` |