{ "name": "root", "gauges": { "Pyramids.Policy.Entropy.mean": { "value": 0.11904668062925339, "min": 0.11854852735996246, "max": 1.4648370742797852, "count": 100 }, "Pyramids.Policy.Entropy.sum": { "value": 3569.49560546875, "min": 3567.83642578125, "max": 44437.296875, "count": 100 }, "Pyramids.Step.mean": { "value": 2999925.0, "min": 29923.0, "max": 2999925.0, "count": 100 }, "Pyramids.Step.sum": { "value": 2999925.0, "min": 29923.0, "max": 2999925.0, "count": 100 }, "Pyramids.Policy.ExtrinsicValueEstimate.mean": { "value": 0.855981171131134, "min": -0.13573695719242096, "max": 0.9029719829559326, "count": 100 }, "Pyramids.Policy.ExtrinsicValueEstimate.sum": { "value": 261.93023681640625, "min": -32.57686996459961, "max": 286.24212646484375, "count": 100 }, "Pyramids.Policy.RndValueEstimate.mean": { "value": 0.020232953131198883, "min": -0.007196659687906504, "max": 0.3321530818939209, "count": 100 }, "Pyramids.Policy.RndValueEstimate.sum": { "value": 6.191283702850342, "min": -2.0942280292510986, "max": 78.72028350830078, "count": 100 }, "Pyramids.Losses.PolicyLoss.mean": { "value": 0.0661955536897516, "min": 0.06527114040282968, "max": 0.07674130434250438, "count": 100 }, "Pyramids.Losses.PolicyLoss.sum": { "value": 0.9267377516565224, "min": 0.4991760464741758, "max": 1.0743782607950614, "count": 100 }, "Pyramids.Losses.ValueLoss.mean": { "value": 0.014059786943280847, "min": 0.0011896181640310489, "max": 0.01812642000316243, "count": 100 }, "Pyramids.Losses.ValueLoss.sum": { "value": 0.19683701720593186, "min": 0.014275417968372586, "max": 0.25376988004427403, "count": 100 }, "Pyramids.Policy.LearningRate.mean": { "value": 1.4229995256999985e-06, "min": 1.4229995256999985e-06, "max": 0.0002984113862438238, "count": 100 }, "Pyramids.Policy.LearningRate.sum": { "value": 1.992199335979998e-05, "min": 1.992199335979998e-05, "max": 0.004072459242513633, "count": 100 }, "Pyramids.Policy.Epsilon.mean": { "value": 0.10047430000000002, "min": 0.10047430000000002, "max": 0.19947046190476195, "count": 100 }, "Pyramids.Policy.Epsilon.sum": { "value": 1.4066402000000002, "min": 1.3962932333333335, "max": 2.857486366666666, "count": 100 }, "Pyramids.Policy.Beta.mean": { "value": 5.7382569999999966e-05, "min": 5.7382569999999966e-05, "max": 0.009947099144285713, "count": 100 }, "Pyramids.Policy.Beta.sum": { "value": 0.0008033559799999995, "min": 0.0008033559799999995, "max": 0.13576288802999997, "count": 100 }, "Pyramids.Losses.RNDLoss.mean": { "value": 0.01838000677525997, "min": 0.016804298385977745, "max": 0.5083096623420715, "count": 100 }, "Pyramids.Losses.RNDLoss.sum": { "value": 0.2573201060295105, "min": 0.23526018857955933, "max": 3.5581676959991455, "count": 100 }, "Pyramids.Environment.EpisodeLength.mean": { "value": 213.61870503597123, "min": 187.29605263157896, "max": 997.2666666666667, "count": 100 }, "Pyramids.Environment.EpisodeLength.sum": { "value": 29693.0, "min": 16722.0, "max": 33265.0, "count": 100 }, "Pyramids.Environment.CumulativeReward.mean": { "value": 1.7728941877898963, "min": -0.9315533851583798, "max": 1.8118807836281543, "count": 100 }, "Pyramids.Environment.CumulativeReward.sum": { "value": 244.65939791500568, "min": -30.736001655459404, "max": 287.1199979484081, "count": 100 }, "Pyramids.Policy.ExtrinsicReward.mean": { "value": 1.7728941877898963, "min": -0.9315533851583798, "max": 1.8118807836281543, "count": 100 }, "Pyramids.Policy.ExtrinsicReward.sum": { "value": 244.65939791500568, "min": -30.736001655459404, "max": 287.1199979484081, "count": 100 }, "Pyramids.Policy.RndReward.mean": { "value": 0.03983358411420815, "min": 0.034012592773185274, "max": 9.525116497979445, "count": 100 }, "Pyramids.Policy.RndReward.sum": { "value": 5.497034607760725, "min": 4.84589851659257, "max": 161.92698046565056, "count": 100 }, "Pyramids.IsTraining.mean": { "value": 1.0, "min": 1.0, "max": 1.0, "count": 100 }, "Pyramids.IsTraining.sum": { "value": 1.0, "min": 1.0, "max": 1.0, "count": 100 } }, "metadata": { "timer_format_version": "0.1.0", "start_time_seconds": "1680899796", "python_version": "3.9.16 (main, Dec 7 2022, 01:11:51) \n[GCC 9.4.0]", "command_line_arguments": "/usr/local/bin/mlagents-learn ./config/ppo/PyramidsRND.yaml --env=./training-envs-executables/linux/Pyramids/Pyramids --run-id=Pyramids Training --no-graphics", "mlagents_version": "0.31.0.dev0", "mlagents_envs_version": "0.31.0.dev0", "communication_protocol_version": "1.5.0", "pytorch_version": "1.11.0+cu102", "numpy_version": "1.21.2", "end_time_seconds": "1680907315" }, "total": 7519.459821255001, "count": 1, "self": 0.48222539700145717, "children": { "run_training.setup": { "total": 0.10892754600013177, "count": 1, "self": 0.10892754600013177 }, "TrainerController.start_learning": { "total": 7518.8686683119995, "count": 1, "self": 4.536888536273182, "children": { "TrainerController._reset_env": { "total": 4.27148929100008, "count": 1, "self": 4.27148929100008 }, "TrainerController.advance": { "total": 7509.966673717728, "count": 195861, "self": 4.8171705228269275, "children": { "env_step": { "total": 5691.1699927449645, "count": 195861, "self": 5358.275055846609, "children": { "SubprocessEnvManager._take_step": { "total": 330.22657506226005, "count": 195861, "self": 14.815799771296724, "children": { "TorchPolicy.evaluate": { "total": 315.41077529096333, "count": 187564, "self": 315.41077529096333 } } }, "workers": { "total": 2.6683618360959827, "count": 195861, "self": 0.0, "children": { "worker_root": { "total": 7501.36142092792, "count": 195861, "is_parallel": true, "self": 2501.407053167859, "children": { "run_training.setup": { "total": 0.0, "count": 0, "is_parallel": true, "self": 0.0, "children": { "steps_from_proto": { "total": 0.0017689130002054299, "count": 1, "is_parallel": true, "self": 0.0006476930000189896, "children": { "_process_rank_one_or_two_observation": { "total": 0.0011212200001864403, "count": 8, "is_parallel": true, "self": 0.0011212200001864403 } } }, "UnityEnvironment.step": { "total": 0.07430531499994686, "count": 1, "is_parallel": true, "self": 0.0007283019999704266, "children": { "UnityEnvironment._generate_step_input": { "total": 0.0005165290001514222, "count": 1, "is_parallel": true, "self": 0.0005165290001514222 }, "communicator.exchange": { "total": 0.07148498299989114, "count": 1, "is_parallel": true, "self": 0.07148498299989114 }, "steps_from_proto": { "total": 0.0015755009999338654, "count": 1, "is_parallel": true, "self": 0.0003450009999141912, "children": { "_process_rank_one_or_two_observation": { "total": 0.0012305000000196742, "count": 8, "is_parallel": true, "self": 0.0012305000000196742 } } } } } } }, "UnityEnvironment.step": { "total": 4999.954367760061, "count": 195860, "is_parallel": true, "self": 98.50989354934427, "children": { "UnityEnvironment._generate_step_input": { "total": 74.58159588182548, "count": 195860, "is_parallel": true, "self": 74.58159588182548 }, "communicator.exchange": { "total": 4527.607925359053, "count": 195860, "is_parallel": true, "self": 4527.607925359053 }, "steps_from_proto": { "total": 299.2549529698381, "count": 195860, "is_parallel": true, "self": 65.95915262216704, "children": { "_process_rank_one_or_two_observation": { "total": 233.29580034767105, "count": 1566880, "is_parallel": true, "self": 233.29580034767105 } } } } } } } } } } }, "trainer_advance": { "total": 1813.9795104499365, "count": 195861, "self": 8.865567593038122, "children": { "process_trajectory": { "total": 338.6935061619008, "count": 195861, "self": 337.96020419490173, "children": { "RLTrainer._checkpoint": { "total": 0.733301966999079, "count": 6, "self": 0.733301966999079 } } }, "_update_policy": { "total": 1466.4204366949975, "count": 1402, "self": 929.950787631092, "children": { "TorchPPOOptimizer.update": { "total": 536.4696490639055, "count": 68382, "self": 536.4696490639055 } } } } } } }, "trainer_threads": { "total": 9.549985406920314e-07, "count": 1, "self": 9.549985406920314e-07 }, "TrainerController._save_models": { "total": 0.09361581200028013, "count": 1, "self": 0.0014196279989846516, "children": { "RLTrainer._checkpoint": { "total": 0.09219618400129548, "count": 1, "self": 0.09219618400129548 } } } } } } }