Upload 28 files
Browse files- .gitattributes +1 -0
- Dataset004_WML/nnUNetTrainer_8000epochs__nnUNetPlans__3d_fullres/dataset.json +12 -0
- Dataset004_WML/nnUNetTrainer_8000epochs__nnUNetPlans__3d_fullres/dataset_fingerprint.json +0 -0
- Dataset004_WML/nnUNetTrainer_8000epochs__nnUNetPlans__3d_fullres/fold_0/checkpoint_best.pth +3 -0
- Dataset004_WML/nnUNetTrainer_8000epochs__nnUNetPlans__3d_fullres/fold_0/checkpoint_final.pth +3 -0
- Dataset004_WML/nnUNetTrainer_8000epochs__nnUNetPlans__3d_fullres/fold_0/debug.json +53 -0
- Dataset004_WML/nnUNetTrainer_8000epochs__nnUNetPlans__3d_fullres/fold_0/progress.png +0 -0
- Dataset004_WML/nnUNetTrainer_8000epochs__nnUNetPlans__3d_fullres/fold_0/training_log_2024_11_21_10_39_24.txt +0 -0
- Dataset004_WML/nnUNetTrainer_8000epochs__nnUNetPlans__3d_fullres/fold_1/checkpoint_best.pth +3 -0
- Dataset004_WML/nnUNetTrainer_8000epochs__nnUNetPlans__3d_fullres/fold_1/checkpoint_final.pth +3 -0
- Dataset004_WML/nnUNetTrainer_8000epochs__nnUNetPlans__3d_fullres/fold_1/debug.json +53 -0
- Dataset004_WML/nnUNetTrainer_8000epochs__nnUNetPlans__3d_fullres/fold_1/progress.png +3 -0
- Dataset004_WML/nnUNetTrainer_8000epochs__nnUNetPlans__3d_fullres/fold_1/training_log_2024_11_21_10_39_41.txt +0 -0
- Dataset004_WML/nnUNetTrainer_8000epochs__nnUNetPlans__3d_fullres/fold_2/checkpoint_best.pth +3 -0
- Dataset004_WML/nnUNetTrainer_8000epochs__nnUNetPlans__3d_fullres/fold_2/checkpoint_final.pth +3 -0
- Dataset004_WML/nnUNetTrainer_8000epochs__nnUNetPlans__3d_fullres/fold_2/debug.json +53 -0
- Dataset004_WML/nnUNetTrainer_8000epochs__nnUNetPlans__3d_fullres/fold_2/progress.png +0 -0
- Dataset004_WML/nnUNetTrainer_8000epochs__nnUNetPlans__3d_fullres/fold_2/training_log_2024_11_21_10_39_47.txt +0 -0
- Dataset004_WML/nnUNetTrainer_8000epochs__nnUNetPlans__3d_fullres/fold_3/checkpoint_best.pth +3 -0
- Dataset004_WML/nnUNetTrainer_8000epochs__nnUNetPlans__3d_fullres/fold_3/checkpoint_final.pth +3 -0
- Dataset004_WML/nnUNetTrainer_8000epochs__nnUNetPlans__3d_fullres/fold_3/debug.json +53 -0
- Dataset004_WML/nnUNetTrainer_8000epochs__nnUNetPlans__3d_fullres/fold_3/progress.png +0 -0
- Dataset004_WML/nnUNetTrainer_8000epochs__nnUNetPlans__3d_fullres/fold_3/training_log_2024_11_21_10_40_15.txt +0 -0
- Dataset004_WML/nnUNetTrainer_8000epochs__nnUNetPlans__3d_fullres/fold_4/checkpoint_best.pth +3 -0
- Dataset004_WML/nnUNetTrainer_8000epochs__nnUNetPlans__3d_fullres/fold_4/checkpoint_final.pth +3 -0
- Dataset004_WML/nnUNetTrainer_8000epochs__nnUNetPlans__3d_fullres/fold_4/debug.json +53 -0
- Dataset004_WML/nnUNetTrainer_8000epochs__nnUNetPlans__3d_fullres/fold_4/progress.png +0 -0
- Dataset004_WML/nnUNetTrainer_8000epochs__nnUNetPlans__3d_fullres/fold_4/training_log_2024_11_21_10_40_22.txt +0 -0
- Dataset004_WML/nnUNetTrainer_8000epochs__nnUNetPlans__3d_fullres/plans.json +345 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
Dataset004_WML/nnUNetTrainer_8000epochs__nnUNetPlans__3d_fullres/fold_1/progress.png filter=lfs diff=lfs merge=lfs -text
|
Dataset004_WML/nnUNetTrainer_8000epochs__nnUNetPlans__3d_fullres/dataset.json
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"channel_names": {
|
3 |
+
"0": "FLAIR"
|
4 |
+
},
|
5 |
+
"labels": {
|
6 |
+
"background": 0,
|
7 |
+
"Lesion": 1
|
8 |
+
},
|
9 |
+
"numTraining": 668,
|
10 |
+
"file_ending": ".nii.gz",
|
11 |
+
"overwrite_image_reader_writer": "SimpleITKIO"
|
12 |
+
}
|
Dataset004_WML/nnUNetTrainer_8000epochs__nnUNetPlans__3d_fullres/dataset_fingerprint.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
Dataset004_WML/nnUNetTrainer_8000epochs__nnUNetPlans__3d_fullres/fold_0/checkpoint_best.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:71d15199f8c4c43b4305b1925d65f4c2db9eee7f8e6d30da24d098a96068c52c
|
3 |
+
size 249212962
|
Dataset004_WML/nnUNetTrainer_8000epochs__nnUNetPlans__3d_fullres/fold_0/checkpoint_final.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4fc7db24e7c1541b59023df2a2f498a964eb629fe38f4eaec763297dd3fdf861
|
3 |
+
size 249223422
|
Dataset004_WML/nnUNetTrainer_8000epochs__nnUNetPlans__3d_fullres/fold_0/debug.json
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_best_ema": "None",
|
3 |
+
"batch_size": "2",
|
4 |
+
"configuration_manager": "{'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [112, 128, 160], 'median_image_size_in_voxels': [133.0, 154.0, 185.0], 'spacing': [1.0, 0.9000000059604645, 0.9000000059604645], 'normalization_schemes': ['ZScoreNormalization'], 'use_mask_for_norm': [True], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_class_name': 'dynamic_network_architectures.architectures.unet.PlainConvUNet', 'arch_kwargs': {'n_stages': 6, 'features_per_stage': [32, 64, 128, 256, 320, 320], 'conv_op': 'torch.nn.modules.conv.Conv3d', 'kernel_sizes': [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'strides': [[1, 1, 1], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [1, 2, 2]], 'n_conv_per_stage': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'conv_bias': True, 'norm_op': 'torch.nn.modules.instancenorm.InstanceNorm3d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': False}",
|
5 |
+
"configuration_name": "3d_fullres",
|
6 |
+
"cudnn_version": 8902,
|
7 |
+
"current_epoch": "0",
|
8 |
+
"dataloader_train": "<batchgenerators.dataloading.nondet_multi_threaded_augmenter.NonDetMultiThreadedAugmenter object at 0x147e2d833d00>",
|
9 |
+
"dataloader_train.generator": "<nnunetv2.training.dataloading.data_loader_3d.nnUNetDataLoader3D object at 0x147e2d833100>",
|
10 |
+
"dataloader_train.num_processes": "12",
|
11 |
+
"dataloader_train.transform": "None",
|
12 |
+
"dataloader_val": "<batchgenerators.dataloading.nondet_multi_threaded_augmenter.NonDetMultiThreadedAugmenter object at 0x147e2d833400>",
|
13 |
+
"dataloader_val.generator": "<nnunetv2.training.dataloading.data_loader_3d.nnUNetDataLoader3D object at 0x147e2d8331c0>",
|
14 |
+
"dataloader_val.num_processes": "6",
|
15 |
+
"dataloader_val.transform": "None",
|
16 |
+
"dataset_json": "{'channel_names': {'0': 'FLAIR'}, 'labels': {'background': 0, 'Lesion': 1}, 'numTraining': 668, 'file_ending': '.nii.gz', 'overwrite_image_reader_writer': 'SimpleITKIO'}",
|
17 |
+
"device": "cuda:0",
|
18 |
+
"disable_checkpointing": "False",
|
19 |
+
"enable_deep_supervision": "True",
|
20 |
+
"fold": "0",
|
21 |
+
"folder_with_segs_from_previous_stage": "None",
|
22 |
+
"gpu_name": "NVIDIA H100 80GB HBM3",
|
23 |
+
"grad_scaler": "<torch.cuda.amp.grad_scaler.GradScaler object at 0x147e2dc53dc0>",
|
24 |
+
"hostname": "lg02e14",
|
25 |
+
"inference_allowed_mirroring_axes": "(0, 1, 2)",
|
26 |
+
"initial_lr": "0.01",
|
27 |
+
"is_cascaded": "False",
|
28 |
+
"is_ddp": "False",
|
29 |
+
"label_manager": "<nnunetv2.utilities.label_handling.label_handling.LabelManager object at 0x147e2dc53e80>",
|
30 |
+
"local_rank": "0",
|
31 |
+
"log_file": "/sc/arion/projects/becklab/Francesco/Models/nnUNet_v2/nnUNet_trained_models/Dataset004_WML/nnUNetTrainer_8000epochs__nnUNetPlans__3d_fullres/fold_0/training_log_2024_11_21_10_39_24.txt",
|
32 |
+
"logger": "<nnunetv2.training.logging.nnunet_logger.nnUNetLogger object at 0x147e2dc53c70>",
|
33 |
+
"loss": "DeepSupervisionWrapper(\n (loss): DC_and_CE_loss(\n (ce): RobustCrossEntropyLoss()\n (dc): OptimizedModule(\n (_orig_mod): MemoryEfficientSoftDiceLoss()\n )\n )\n)",
|
34 |
+
"lr_scheduler": "<nnunetv2.training.lr_scheduler.polylr.PolyLRScheduler object at 0x147e2c1a8eb0>",
|
35 |
+
"my_init_kwargs": "{'plans': {'dataset_name': 'Dataset004_WML', 'plans_name': 'nnUNetPlans', 'original_median_spacing_after_transp': [1.0, 0.9000000059604645, 0.9000000059604645], 'original_median_shape_after_transp': [144, 177, 190], 'image_reader_writer': 'SimpleITKIO', 'transpose_forward': [2, 0, 1], 'transpose_backward': [1, 2, 0], 'configurations': {'2d': {'data_identifier': 'nnUNetPlans_2d', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 106, 'patch_size': [160, 192], 'median_image_size_in_voxels': [154.0, 185.0], 'spacing': [0.9000000059604645, 0.9000000059604645], 'normalization_schemes': ['ZScoreNormalization'], 'use_mask_for_norm': [True], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_class_name': 'dynamic_network_architectures.architectures.unet.PlainConvUNet', 'arch_kwargs': {'n_stages': 6, 'features_per_stage': [32, 64, 128, 256, 512, 512], 'conv_op': 'torch.nn.modules.conv.Conv2d', 'kernel_sizes': [[3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3]], 'strides': [[1, 1], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2]], 'n_conv_per_stage': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'conv_bias': True, 'norm_op': 'torch.nn.modules.instancenorm.InstanceNorm2d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': True}, '3d_fullres': {'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [112, 128, 160], 'median_image_size_in_voxels': [133.0, 154.0, 185.0], 'spacing': [1.0, 0.9000000059604645, 0.9000000059604645], 'normalization_schemes': ['ZScoreNormalization'], 'use_mask_for_norm': [True], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_class_name': 'dynamic_network_architectures.architectures.unet.PlainConvUNet', 'arch_kwargs': {'n_stages': 6, 'features_per_stage': [32, 64, 128, 256, 320, 320], 'conv_op': 'torch.nn.modules.conv.Conv3d', 'kernel_sizes': [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'strides': [[1, 1, 1], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [1, 2, 2]], 'n_conv_per_stage': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'conv_bias': True, 'norm_op': 'torch.nn.modules.instancenorm.InstanceNorm3d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': False}}, 'experiment_planner_used': 'ExperimentPlanner', 'label_manager': 'LabelManager', 'foreground_intensity_properties_per_channel': {'0': {'max': 3688541.5, 'mean': 63206.06989644738, 'median': 167.43850708007812, 'min': 0.0, 'percentile_00_5': 47.72833251953125, 'percentile_99_5': 2077017.5018749982, 'std': 327313.09328078595}}}, 'configuration': '3d_fullres', 'fold': 0, 'dataset_json': {'channel_names': {'0': 'FLAIR'}, 'labels': {'background': 0, 'Lesion': 1}, 'numTraining': 668, 'file_ending': '.nii.gz', 'overwrite_image_reader_writer': 'SimpleITKIO'}, 'unpack_dataset': True, 'device': device(type='cuda')}",
|
36 |
+
"network": "OptimizedModule",
|
37 |
+
"num_epochs": "8000",
|
38 |
+
"num_input_channels": "1",
|
39 |
+
"num_iterations_per_epoch": "250",
|
40 |
+
"num_val_iterations_per_epoch": "50",
|
41 |
+
"optimizer": "SGD (\nParameter Group 0\n dampening: 0\n differentiable: False\n foreach: None\n initial_lr: 0.01\n lr: 0.01\n maximize: False\n momentum: 0.99\n nesterov: True\n weight_decay: 3e-05\n)",
|
42 |
+
"output_folder": "/sc/arion/projects/becklab/Francesco/Models/nnUNet_v2/nnUNet_trained_models/Dataset004_WML/nnUNetTrainer_8000epochs__nnUNetPlans__3d_fullres/fold_0",
|
43 |
+
"output_folder_base": "/sc/arion/projects/becklab/Francesco/Models/nnUNet_v2/nnUNet_trained_models/Dataset004_WML/nnUNetTrainer_8000epochs__nnUNetPlans__3d_fullres",
|
44 |
+
"oversample_foreground_percent": "0.33",
|
45 |
+
"plans_manager": "{'dataset_name': 'Dataset004_WML', 'plans_name': 'nnUNetPlans', 'original_median_spacing_after_transp': [1.0, 0.9000000059604645, 0.9000000059604645], 'original_median_shape_after_transp': [144, 177, 190], 'image_reader_writer': 'SimpleITKIO', 'transpose_forward': [2, 0, 1], 'transpose_backward': [1, 2, 0], 'configurations': {'2d': {'data_identifier': 'nnUNetPlans_2d', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 106, 'patch_size': [160, 192], 'median_image_size_in_voxels': [154.0, 185.0], 'spacing': [0.9000000059604645, 0.9000000059604645], 'normalization_schemes': ['ZScoreNormalization'], 'use_mask_for_norm': [True], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_class_name': 'dynamic_network_architectures.architectures.unet.PlainConvUNet', 'arch_kwargs': {'n_stages': 6, 'features_per_stage': [32, 64, 128, 256, 512, 512], 'conv_op': 'torch.nn.modules.conv.Conv2d', 'kernel_sizes': [[3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3]], 'strides': [[1, 1], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2]], 'n_conv_per_stage': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'conv_bias': True, 'norm_op': 'torch.nn.modules.instancenorm.InstanceNorm2d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': True}, '3d_fullres': {'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [112, 128, 160], 'median_image_size_in_voxels': [133.0, 154.0, 185.0], 'spacing': [1.0, 0.9000000059604645, 0.9000000059604645], 'normalization_schemes': ['ZScoreNormalization'], 'use_mask_for_norm': [True], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_class_name': 'dynamic_network_architectures.architectures.unet.PlainConvUNet', 'arch_kwargs': {'n_stages': 6, 'features_per_stage': [32, 64, 128, 256, 320, 320], 'conv_op': 'torch.nn.modules.conv.Conv3d', 'kernel_sizes': [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'strides': [[1, 1, 1], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [1, 2, 2]], 'n_conv_per_stage': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'conv_bias': True, 'norm_op': 'torch.nn.modules.instancenorm.InstanceNorm3d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': False}}, 'experiment_planner_used': 'ExperimentPlanner', 'label_manager': 'LabelManager', 'foreground_intensity_properties_per_channel': {'0': {'max': 3688541.5, 'mean': 63206.06989644738, 'median': 167.43850708007812, 'min': 0.0, 'percentile_00_5': 47.72833251953125, 'percentile_99_5': 2077017.5018749982, 'std': 327313.09328078595}}}",
|
46 |
+
"preprocessed_dataset_folder": "/sc/arion/projects/becklab/Francesco/Models/nnUNet_v2/nnUNet_preprocessed/Dataset004_WML/nnUNetPlans_3d_fullres",
|
47 |
+
"preprocessed_dataset_folder_base": "/sc/arion/projects/becklab/Francesco/Models/nnUNet_v2/nnUNet_preprocessed/Dataset004_WML",
|
48 |
+
"save_every": "50",
|
49 |
+
"torch_version": "2.1.2+cu121",
|
50 |
+
"unpack_dataset": "True",
|
51 |
+
"was_initialized": "True",
|
52 |
+
"weight_decay": "3e-05"
|
53 |
+
}
|
Dataset004_WML/nnUNetTrainer_8000epochs__nnUNetPlans__3d_fullres/fold_0/progress.png
ADDED
![]() |
Dataset004_WML/nnUNetTrainer_8000epochs__nnUNetPlans__3d_fullres/fold_0/training_log_2024_11_21_10_39_24.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
Dataset004_WML/nnUNetTrainer_8000epochs__nnUNetPlans__3d_fullres/fold_1/checkpoint_best.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:48ba3b2265daf43c721f577a57c7129a0e98f872757d3dcbd0129f6de910074d
|
3 |
+
size 249223778
|
Dataset004_WML/nnUNetTrainer_8000epochs__nnUNetPlans__3d_fullres/fold_1/checkpoint_final.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3966dd256074a0ea3c7d16c3a8e7412a6cb5071220df71b54745aeb50c33c33c
|
3 |
+
size 249224766
|
Dataset004_WML/nnUNetTrainer_8000epochs__nnUNetPlans__3d_fullres/fold_1/debug.json
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_best_ema": "None",
|
3 |
+
"batch_size": "2",
|
4 |
+
"configuration_manager": "{'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [112, 128, 160], 'median_image_size_in_voxels': [133.0, 154.0, 185.0], 'spacing': [1.0, 0.9000000059604645, 0.9000000059604645], 'normalization_schemes': ['ZScoreNormalization'], 'use_mask_for_norm': [True], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_class_name': 'dynamic_network_architectures.architectures.unet.PlainConvUNet', 'arch_kwargs': {'n_stages': 6, 'features_per_stage': [32, 64, 128, 256, 320, 320], 'conv_op': 'torch.nn.modules.conv.Conv3d', 'kernel_sizes': [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'strides': [[1, 1, 1], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [1, 2, 2]], 'n_conv_per_stage': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'conv_bias': True, 'norm_op': 'torch.nn.modules.instancenorm.InstanceNorm3d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': False}",
|
5 |
+
"configuration_name": "3d_fullres",
|
6 |
+
"cudnn_version": 8902,
|
7 |
+
"current_epoch": "0",
|
8 |
+
"dataloader_train": "<batchgenerators.dataloading.nondet_multi_threaded_augmenter.NonDetMultiThreadedAugmenter object at 0x154a0bd0be50>",
|
9 |
+
"dataloader_train.generator": "<nnunetv2.training.dataloading.data_loader_3d.nnUNetDataLoader3D object at 0x154a0bd0b250>",
|
10 |
+
"dataloader_train.num_processes": "12",
|
11 |
+
"dataloader_train.transform": "None",
|
12 |
+
"dataloader_val": "<batchgenerators.dataloading.nondet_multi_threaded_augmenter.NonDetMultiThreadedAugmenter object at 0x154a0bd0b550>",
|
13 |
+
"dataloader_val.generator": "<nnunetv2.training.dataloading.data_loader_3d.nnUNetDataLoader3D object at 0x154a0bd0b310>",
|
14 |
+
"dataloader_val.num_processes": "6",
|
15 |
+
"dataloader_val.transform": "None",
|
16 |
+
"dataset_json": "{'channel_names': {'0': 'FLAIR'}, 'labels': {'background': 0, 'Lesion': 1}, 'numTraining': 668, 'file_ending': '.nii.gz', 'overwrite_image_reader_writer': 'SimpleITKIO'}",
|
17 |
+
"device": "cuda:0",
|
18 |
+
"disable_checkpointing": "False",
|
19 |
+
"enable_deep_supervision": "True",
|
20 |
+
"fold": "1",
|
21 |
+
"folder_with_segs_from_previous_stage": "None",
|
22 |
+
"gpu_name": "NVIDIA H100 80GB HBM3",
|
23 |
+
"grad_scaler": "<torch.cuda.amp.grad_scaler.GradScaler object at 0x154a0bf3ffd0>",
|
24 |
+
"hostname": "lg02e14",
|
25 |
+
"inference_allowed_mirroring_axes": "(0, 1, 2)",
|
26 |
+
"initial_lr": "0.01",
|
27 |
+
"is_cascaded": "False",
|
28 |
+
"is_ddp": "False",
|
29 |
+
"label_manager": "<nnunetv2.utilities.label_handling.label_handling.LabelManager object at 0x154a0bf3ffa0>",
|
30 |
+
"local_rank": "0",
|
31 |
+
"log_file": "/sc/arion/projects/becklab/Francesco/Models/nnUNet_v2/nnUNet_trained_models/Dataset004_WML/nnUNetTrainer_8000epochs__nnUNetPlans__3d_fullres/fold_1/training_log_2024_11_21_10_39_41.txt",
|
32 |
+
"logger": "<nnunetv2.training.logging.nnunet_logger.nnUNetLogger object at 0x154a0bf3fc10>",
|
33 |
+
"loss": "DeepSupervisionWrapper(\n (loss): DC_and_CE_loss(\n (ce): RobustCrossEntropyLoss()\n (dc): OptimizedModule(\n (_orig_mod): MemoryEfficientSoftDiceLoss()\n )\n )\n)",
|
34 |
+
"lr_scheduler": "<nnunetv2.training.lr_scheduler.polylr.PolyLRScheduler object at 0x154a08420e80>",
|
35 |
+
"my_init_kwargs": "{'plans': {'dataset_name': 'Dataset004_WML', 'plans_name': 'nnUNetPlans', 'original_median_spacing_after_transp': [1.0, 0.9000000059604645, 0.9000000059604645], 'original_median_shape_after_transp': [144, 177, 190], 'image_reader_writer': 'SimpleITKIO', 'transpose_forward': [2, 0, 1], 'transpose_backward': [1, 2, 0], 'configurations': {'2d': {'data_identifier': 'nnUNetPlans_2d', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 106, 'patch_size': [160, 192], 'median_image_size_in_voxels': [154.0, 185.0], 'spacing': [0.9000000059604645, 0.9000000059604645], 'normalization_schemes': ['ZScoreNormalization'], 'use_mask_for_norm': [True], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_class_name': 'dynamic_network_architectures.architectures.unet.PlainConvUNet', 'arch_kwargs': {'n_stages': 6, 'features_per_stage': [32, 64, 128, 256, 512, 512], 'conv_op': 'torch.nn.modules.conv.Conv2d', 'kernel_sizes': [[3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3]], 'strides': [[1, 1], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2]], 'n_conv_per_stage': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'conv_bias': True, 'norm_op': 'torch.nn.modules.instancenorm.InstanceNorm2d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': True}, '3d_fullres': {'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [112, 128, 160], 'median_image_size_in_voxels': [133.0, 154.0, 185.0], 'spacing': [1.0, 0.9000000059604645, 0.9000000059604645], 'normalization_schemes': ['ZScoreNormalization'], 'use_mask_for_norm': [True], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_class_name': 'dynamic_network_architectures.architectures.unet.PlainConvUNet', 'arch_kwargs': {'n_stages': 6, 'features_per_stage': [32, 64, 128, 256, 320, 320], 'conv_op': 'torch.nn.modules.conv.Conv3d', 'kernel_sizes': [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'strides': [[1, 1, 1], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [1, 2, 2]], 'n_conv_per_stage': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'conv_bias': True, 'norm_op': 'torch.nn.modules.instancenorm.InstanceNorm3d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': False}}, 'experiment_planner_used': 'ExperimentPlanner', 'label_manager': 'LabelManager', 'foreground_intensity_properties_per_channel': {'0': {'max': 3688541.5, 'mean': 63206.06989644738, 'median': 167.43850708007812, 'min': 0.0, 'percentile_00_5': 47.72833251953125, 'percentile_99_5': 2077017.5018749982, 'std': 327313.09328078595}}}, 'configuration': '3d_fullres', 'fold': 1, 'dataset_json': {'channel_names': {'0': 'FLAIR'}, 'labels': {'background': 0, 'Lesion': 1}, 'numTraining': 668, 'file_ending': '.nii.gz', 'overwrite_image_reader_writer': 'SimpleITKIO'}, 'unpack_dataset': True, 'device': device(type='cuda')}",
|
36 |
+
"network": "OptimizedModule",
|
37 |
+
"num_epochs": "8000",
|
38 |
+
"num_input_channels": "1",
|
39 |
+
"num_iterations_per_epoch": "250",
|
40 |
+
"num_val_iterations_per_epoch": "50",
|
41 |
+
"optimizer": "SGD (\nParameter Group 0\n dampening: 0\n differentiable: False\n foreach: None\n initial_lr: 0.01\n lr: 0.01\n maximize: False\n momentum: 0.99\n nesterov: True\n weight_decay: 3e-05\n)",
|
42 |
+
"output_folder": "/sc/arion/projects/becklab/Francesco/Models/nnUNet_v2/nnUNet_trained_models/Dataset004_WML/nnUNetTrainer_8000epochs__nnUNetPlans__3d_fullres/fold_1",
|
43 |
+
"output_folder_base": "/sc/arion/projects/becklab/Francesco/Models/nnUNet_v2/nnUNet_trained_models/Dataset004_WML/nnUNetTrainer_8000epochs__nnUNetPlans__3d_fullres",
|
44 |
+
"oversample_foreground_percent": "0.33",
|
45 |
+
"plans_manager": "{'dataset_name': 'Dataset004_WML', 'plans_name': 'nnUNetPlans', 'original_median_spacing_after_transp': [1.0, 0.9000000059604645, 0.9000000059604645], 'original_median_shape_after_transp': [144, 177, 190], 'image_reader_writer': 'SimpleITKIO', 'transpose_forward': [2, 0, 1], 'transpose_backward': [1, 2, 0], 'configurations': {'2d': {'data_identifier': 'nnUNetPlans_2d', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 106, 'patch_size': [160, 192], 'median_image_size_in_voxels': [154.0, 185.0], 'spacing': [0.9000000059604645, 0.9000000059604645], 'normalization_schemes': ['ZScoreNormalization'], 'use_mask_for_norm': [True], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_class_name': 'dynamic_network_architectures.architectures.unet.PlainConvUNet', 'arch_kwargs': {'n_stages': 6, 'features_per_stage': [32, 64, 128, 256, 512, 512], 'conv_op': 'torch.nn.modules.conv.Conv2d', 'kernel_sizes': [[3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3]], 'strides': [[1, 1], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2]], 'n_conv_per_stage': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'conv_bias': True, 'norm_op': 'torch.nn.modules.instancenorm.InstanceNorm2d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': True}, '3d_fullres': {'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [112, 128, 160], 'median_image_size_in_voxels': [133.0, 154.0, 185.0], 'spacing': [1.0, 0.9000000059604645, 0.9000000059604645], 'normalization_schemes': ['ZScoreNormalization'], 'use_mask_for_norm': [True], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_class_name': 'dynamic_network_architectures.architectures.unet.PlainConvUNet', 'arch_kwargs': {'n_stages': 6, 'features_per_stage': [32, 64, 128, 256, 320, 320], 'conv_op': 'torch.nn.modules.conv.Conv3d', 'kernel_sizes': [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'strides': [[1, 1, 1], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [1, 2, 2]], 'n_conv_per_stage': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'conv_bias': True, 'norm_op': 'torch.nn.modules.instancenorm.InstanceNorm3d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': False}}, 'experiment_planner_used': 'ExperimentPlanner', 'label_manager': 'LabelManager', 'foreground_intensity_properties_per_channel': {'0': {'max': 3688541.5, 'mean': 63206.06989644738, 'median': 167.43850708007812, 'min': 0.0, 'percentile_00_5': 47.72833251953125, 'percentile_99_5': 2077017.5018749982, 'std': 327313.09328078595}}}",
|
46 |
+
"preprocessed_dataset_folder": "/sc/arion/projects/becklab/Francesco/Models/nnUNet_v2/nnUNet_preprocessed/Dataset004_WML/nnUNetPlans_3d_fullres",
|
47 |
+
"preprocessed_dataset_folder_base": "/sc/arion/projects/becklab/Francesco/Models/nnUNet_v2/nnUNet_preprocessed/Dataset004_WML",
|
48 |
+
"save_every": "50",
|
49 |
+
"torch_version": "2.1.2+cu121",
|
50 |
+
"unpack_dataset": "True",
|
51 |
+
"was_initialized": "True",
|
52 |
+
"weight_decay": "3e-05"
|
53 |
+
}
|
Dataset004_WML/nnUNetTrainer_8000epochs__nnUNetPlans__3d_fullres/fold_1/progress.png
ADDED
![]() |
Git LFS Details
|
Dataset004_WML/nnUNetTrainer_8000epochs__nnUNetPlans__3d_fullres/fold_1/training_log_2024_11_21_10_39_41.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
Dataset004_WML/nnUNetTrainer_8000epochs__nnUNetPlans__3d_fullres/fold_2/checkpoint_best.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b9c04fe42868196821c655453af654505d74370d266a2010326b95108dc2f395
|
3 |
+
size 249222946
|
Dataset004_WML/nnUNetTrainer_8000epochs__nnUNetPlans__3d_fullres/fold_2/checkpoint_final.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:734be69b968cc6578bcf079bb79db166cd8f5edba0f0dc19a62bbe68021364d8
|
3 |
+
size 249225598
|
Dataset004_WML/nnUNetTrainer_8000epochs__nnUNetPlans__3d_fullres/fold_2/debug.json
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_best_ema": "None",
|
3 |
+
"batch_size": "2",
|
4 |
+
"configuration_manager": "{'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [112, 128, 160], 'median_image_size_in_voxels': [133.0, 154.0, 185.0], 'spacing': [1.0, 0.9000000059604645, 0.9000000059604645], 'normalization_schemes': ['ZScoreNormalization'], 'use_mask_for_norm': [True], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_class_name': 'dynamic_network_architectures.architectures.unet.PlainConvUNet', 'arch_kwargs': {'n_stages': 6, 'features_per_stage': [32, 64, 128, 256, 320, 320], 'conv_op': 'torch.nn.modules.conv.Conv3d', 'kernel_sizes': [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'strides': [[1, 1, 1], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [1, 2, 2]], 'n_conv_per_stage': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'conv_bias': True, 'norm_op': 'torch.nn.modules.instancenorm.InstanceNorm3d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': False}",
|
5 |
+
"configuration_name": "3d_fullres",
|
6 |
+
"cudnn_version": 8902,
|
7 |
+
"current_epoch": "0",
|
8 |
+
"dataloader_train": "<batchgenerators.dataloading.nondet_multi_threaded_augmenter.NonDetMultiThreadedAugmenter object at 0x14d461bb3e80>",
|
9 |
+
"dataloader_train.generator": "<nnunetv2.training.dataloading.data_loader_3d.nnUNetDataLoader3D object at 0x14d461bb3280>",
|
10 |
+
"dataloader_train.num_processes": "12",
|
11 |
+
"dataloader_train.transform": "None",
|
12 |
+
"dataloader_val": "<batchgenerators.dataloading.nondet_multi_threaded_augmenter.NonDetMultiThreadedAugmenter object at 0x14d461bb3580>",
|
13 |
+
"dataloader_val.generator": "<nnunetv2.training.dataloading.data_loader_3d.nnUNetDataLoader3D object at 0x14d461bb3340>",
|
14 |
+
"dataloader_val.num_processes": "6",
|
15 |
+
"dataloader_val.transform": "None",
|
16 |
+
"dataset_json": "{'channel_names': {'0': 'FLAIR'}, 'labels': {'background': 0, 'Lesion': 1}, 'numTraining': 668, 'file_ending': '.nii.gz', 'overwrite_image_reader_writer': 'SimpleITKIO'}",
|
17 |
+
"device": "cuda:0",
|
18 |
+
"disable_checkpointing": "False",
|
19 |
+
"enable_deep_supervision": "True",
|
20 |
+
"fold": "2",
|
21 |
+
"folder_with_segs_from_previous_stage": "None",
|
22 |
+
"gpu_name": "NVIDIA H100 80GB HBM3",
|
23 |
+
"grad_scaler": "<torch.cuda.amp.grad_scaler.GradScaler object at 0x14d461fd3fd0>",
|
24 |
+
"hostname": "lg02e14",
|
25 |
+
"inference_allowed_mirroring_axes": "(0, 1, 2)",
|
26 |
+
"initial_lr": "0.01",
|
27 |
+
"is_cascaded": "False",
|
28 |
+
"is_ddp": "False",
|
29 |
+
"label_manager": "<nnunetv2.utilities.label_handling.label_handling.LabelManager object at 0x14d461fd3fa0>",
|
30 |
+
"local_rank": "0",
|
31 |
+
"log_file": "/sc/arion/projects/becklab/Francesco/Models/nnUNet_v2/nnUNet_trained_models/Dataset004_WML/nnUNetTrainer_8000epochs__nnUNetPlans__3d_fullres/fold_2/training_log_2024_11_21_10_39_47.txt",
|
32 |
+
"logger": "<nnunetv2.training.logging.nnunet_logger.nnUNetLogger object at 0x14d461fd3b50>",
|
33 |
+
"loss": "DeepSupervisionWrapper(\n (loss): DC_and_CE_loss(\n (ce): RobustCrossEntropyLoss()\n (dc): OptimizedModule(\n (_orig_mod): MemoryEfficientSoftDiceLoss()\n )\n )\n)",
|
34 |
+
"lr_scheduler": "<nnunetv2.training.lr_scheduler.polylr.PolyLRScheduler object at 0x14d46051cc40>",
|
35 |
+
"my_init_kwargs": "{'plans': {'dataset_name': 'Dataset004_WML', 'plans_name': 'nnUNetPlans', 'original_median_spacing_after_transp': [1.0, 0.9000000059604645, 0.9000000059604645], 'original_median_shape_after_transp': [144, 177, 190], 'image_reader_writer': 'SimpleITKIO', 'transpose_forward': [2, 0, 1], 'transpose_backward': [1, 2, 0], 'configurations': {'2d': {'data_identifier': 'nnUNetPlans_2d', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 106, 'patch_size': [160, 192], 'median_image_size_in_voxels': [154.0, 185.0], 'spacing': [0.9000000059604645, 0.9000000059604645], 'normalization_schemes': ['ZScoreNormalization'], 'use_mask_for_norm': [True], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_class_name': 'dynamic_network_architectures.architectures.unet.PlainConvUNet', 'arch_kwargs': {'n_stages': 6, 'features_per_stage': [32, 64, 128, 256, 512, 512], 'conv_op': 'torch.nn.modules.conv.Conv2d', 'kernel_sizes': [[3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3]], 'strides': [[1, 1], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2]], 'n_conv_per_stage': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'conv_bias': True, 'norm_op': 'torch.nn.modules.instancenorm.InstanceNorm2d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': True}, '3d_fullres': {'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [112, 128, 160], 'median_image_size_in_voxels': [133.0, 154.0, 185.0], 'spacing': [1.0, 0.9000000059604645, 0.9000000059604645], 'normalization_schemes': ['ZScoreNormalization'], 'use_mask_for_norm': [True], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_class_name': 'dynamic_network_architectures.architectures.unet.PlainConvUNet', 'arch_kwargs': {'n_stages': 6, 'features_per_stage': [32, 64, 128, 256, 320, 320], 'conv_op': 'torch.nn.modules.conv.Conv3d', 'kernel_sizes': [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'strides': [[1, 1, 1], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [1, 2, 2]], 'n_conv_per_stage': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'conv_bias': True, 'norm_op': 'torch.nn.modules.instancenorm.InstanceNorm3d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': False}}, 'experiment_planner_used': 'ExperimentPlanner', 'label_manager': 'LabelManager', 'foreground_intensity_properties_per_channel': {'0': {'max': 3688541.5, 'mean': 63206.06989644738, 'median': 167.43850708007812, 'min': 0.0, 'percentile_00_5': 47.72833251953125, 'percentile_99_5': 2077017.5018749982, 'std': 327313.09328078595}}}, 'configuration': '3d_fullres', 'fold': 2, 'dataset_json': {'channel_names': {'0': 'FLAIR'}, 'labels': {'background': 0, 'Lesion': 1}, 'numTraining': 668, 'file_ending': '.nii.gz', 'overwrite_image_reader_writer': 'SimpleITKIO'}, 'unpack_dataset': True, 'device': device(type='cuda')}",
|
36 |
+
"network": "OptimizedModule",
|
37 |
+
"num_epochs": "8000",
|
38 |
+
"num_input_channels": "1",
|
39 |
+
"num_iterations_per_epoch": "250",
|
40 |
+
"num_val_iterations_per_epoch": "50",
|
41 |
+
"optimizer": "SGD (\nParameter Group 0\n dampening: 0\n differentiable: False\n foreach: None\n initial_lr: 0.01\n lr: 0.01\n maximize: False\n momentum: 0.99\n nesterov: True\n weight_decay: 3e-05\n)",
|
42 |
+
"output_folder": "/sc/arion/projects/becklab/Francesco/Models/nnUNet_v2/nnUNet_trained_models/Dataset004_WML/nnUNetTrainer_8000epochs__nnUNetPlans__3d_fullres/fold_2",
|
43 |
+
"output_folder_base": "/sc/arion/projects/becklab/Francesco/Models/nnUNet_v2/nnUNet_trained_models/Dataset004_WML/nnUNetTrainer_8000epochs__nnUNetPlans__3d_fullres",
|
44 |
+
"oversample_foreground_percent": "0.33",
|
45 |
+
"plans_manager": "{'dataset_name': 'Dataset004_WML', 'plans_name': 'nnUNetPlans', 'original_median_spacing_after_transp': [1.0, 0.9000000059604645, 0.9000000059604645], 'original_median_shape_after_transp': [144, 177, 190], 'image_reader_writer': 'SimpleITKIO', 'transpose_forward': [2, 0, 1], 'transpose_backward': [1, 2, 0], 'configurations': {'2d': {'data_identifier': 'nnUNetPlans_2d', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 106, 'patch_size': [160, 192], 'median_image_size_in_voxels': [154.0, 185.0], 'spacing': [0.9000000059604645, 0.9000000059604645], 'normalization_schemes': ['ZScoreNormalization'], 'use_mask_for_norm': [True], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_class_name': 'dynamic_network_architectures.architectures.unet.PlainConvUNet', 'arch_kwargs': {'n_stages': 6, 'features_per_stage': [32, 64, 128, 256, 512, 512], 'conv_op': 'torch.nn.modules.conv.Conv2d', 'kernel_sizes': [[3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3]], 'strides': [[1, 1], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2]], 'n_conv_per_stage': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'conv_bias': True, 'norm_op': 'torch.nn.modules.instancenorm.InstanceNorm2d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': True}, '3d_fullres': {'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [112, 128, 160], 'median_image_size_in_voxels': [133.0, 154.0, 185.0], 'spacing': [1.0, 0.9000000059604645, 0.9000000059604645], 'normalization_schemes': ['ZScoreNormalization'], 'use_mask_for_norm': [True], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_class_name': 'dynamic_network_architectures.architectures.unet.PlainConvUNet', 'arch_kwargs': {'n_stages': 6, 'features_per_stage': [32, 64, 128, 256, 320, 320], 'conv_op': 'torch.nn.modules.conv.Conv3d', 'kernel_sizes': [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'strides': [[1, 1, 1], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [1, 2, 2]], 'n_conv_per_stage': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'conv_bias': True, 'norm_op': 'torch.nn.modules.instancenorm.InstanceNorm3d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': False}}, 'experiment_planner_used': 'ExperimentPlanner', 'label_manager': 'LabelManager', 'foreground_intensity_properties_per_channel': {'0': {'max': 3688541.5, 'mean': 63206.06989644738, 'median': 167.43850708007812, 'min': 0.0, 'percentile_00_5': 47.72833251953125, 'percentile_99_5': 2077017.5018749982, 'std': 327313.09328078595}}}",
|
46 |
+
"preprocessed_dataset_folder": "/sc/arion/projects/becklab/Francesco/Models/nnUNet_v2/nnUNet_preprocessed/Dataset004_WML/nnUNetPlans_3d_fullres",
|
47 |
+
"preprocessed_dataset_folder_base": "/sc/arion/projects/becklab/Francesco/Models/nnUNet_v2/nnUNet_preprocessed/Dataset004_WML",
|
48 |
+
"save_every": "50",
|
49 |
+
"torch_version": "2.1.2+cu121",
|
50 |
+
"unpack_dataset": "True",
|
51 |
+
"was_initialized": "True",
|
52 |
+
"weight_decay": "3e-05"
|
53 |
+
}
|
Dataset004_WML/nnUNetTrainer_8000epochs__nnUNetPlans__3d_fullres/fold_2/progress.png
ADDED
![]() |
Dataset004_WML/nnUNetTrainer_8000epochs__nnUNetPlans__3d_fullres/fold_2/training_log_2024_11_21_10_39_47.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
Dataset004_WML/nnUNetTrainer_8000epochs__nnUNetPlans__3d_fullres/fold_3/checkpoint_best.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:370175d8d25c50fb8745fa08e7fa3815ab37d0fea358b07543ae1300a4298c73
|
3 |
+
size 249213090
|
Dataset004_WML/nnUNetTrainer_8000epochs__nnUNetPlans__3d_fullres/fold_3/checkpoint_final.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8e989caccdcf45368cc8f1ef8a00598f9f072c1fbe23e57458fc572fea434c3f
|
3 |
+
size 249222462
|
Dataset004_WML/nnUNetTrainer_8000epochs__nnUNetPlans__3d_fullres/fold_3/debug.json
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_best_ema": "None",
|
3 |
+
"batch_size": "2",
|
4 |
+
"configuration_manager": "{'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [112, 128, 160], 'median_image_size_in_voxels': [133.0, 154.0, 185.0], 'spacing': [1.0, 0.9000000059604645, 0.9000000059604645], 'normalization_schemes': ['ZScoreNormalization'], 'use_mask_for_norm': [True], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_class_name': 'dynamic_network_architectures.architectures.unet.PlainConvUNet', 'arch_kwargs': {'n_stages': 6, 'features_per_stage': [32, 64, 128, 256, 320, 320], 'conv_op': 'torch.nn.modules.conv.Conv3d', 'kernel_sizes': [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'strides': [[1, 1, 1], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [1, 2, 2]], 'n_conv_per_stage': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'conv_bias': True, 'norm_op': 'torch.nn.modules.instancenorm.InstanceNorm3d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': False}",
|
5 |
+
"configuration_name": "3d_fullres",
|
6 |
+
"cudnn_version": 8902,
|
7 |
+
"current_epoch": "0",
|
8 |
+
"dataloader_train": "<batchgenerators.dataloading.nondet_multi_threaded_augmenter.NonDetMultiThreadedAugmenter object at 0x14e646f67d30>",
|
9 |
+
"dataloader_train.generator": "<nnunetv2.training.dataloading.data_loader_3d.nnUNetDataLoader3D object at 0x14e646f67130>",
|
10 |
+
"dataloader_train.num_processes": "12",
|
11 |
+
"dataloader_train.transform": "None",
|
12 |
+
"dataloader_val": "<batchgenerators.dataloading.nondet_multi_threaded_augmenter.NonDetMultiThreadedAugmenter object at 0x14e646f67430>",
|
13 |
+
"dataloader_val.generator": "<nnunetv2.training.dataloading.data_loader_3d.nnUNetDataLoader3D object at 0x14e646f671f0>",
|
14 |
+
"dataloader_val.num_processes": "6",
|
15 |
+
"dataloader_val.transform": "None",
|
16 |
+
"dataset_json": "{'channel_names': {'0': 'FLAIR'}, 'labels': {'background': 0, 'Lesion': 1}, 'numTraining': 668, 'file_ending': '.nii.gz', 'overwrite_image_reader_writer': 'SimpleITKIO'}",
|
17 |
+
"device": "cuda:0",
|
18 |
+
"disable_checkpointing": "False",
|
19 |
+
"enable_deep_supervision": "True",
|
20 |
+
"fold": "3",
|
21 |
+
"folder_with_segs_from_previous_stage": "None",
|
22 |
+
"gpu_name": "NVIDIA H100 80GB HBM3",
|
23 |
+
"grad_scaler": "<torch.cuda.amp.grad_scaler.GradScaler object at 0x14e647183eb0>",
|
24 |
+
"hostname": "lg02e16",
|
25 |
+
"inference_allowed_mirroring_axes": "(0, 1, 2)",
|
26 |
+
"initial_lr": "0.01",
|
27 |
+
"is_cascaded": "False",
|
28 |
+
"is_ddp": "False",
|
29 |
+
"label_manager": "<nnunetv2.utilities.label_handling.label_handling.LabelManager object at 0x14e647183f40>",
|
30 |
+
"local_rank": "0",
|
31 |
+
"log_file": "/sc/arion/projects/becklab/Francesco/Models/nnUNet_v2/nnUNet_trained_models/Dataset004_WML/nnUNetTrainer_8000epochs__nnUNetPlans__3d_fullres/fold_3/training_log_2024_11_21_10_40_15.txt",
|
32 |
+
"logger": "<nnunetv2.training.logging.nnunet_logger.nnUNetLogger object at 0x14e647183bb0>",
|
33 |
+
"loss": "DeepSupervisionWrapper(\n (loss): DC_and_CE_loss(\n (ce): RobustCrossEntropyLoss()\n (dc): OptimizedModule(\n (_orig_mod): MemoryEfficientSoftDiceLoss()\n )\n )\n)",
|
34 |
+
"lr_scheduler": "<nnunetv2.training.lr_scheduler.polylr.PolyLRScheduler object at 0x14e63c8427a0>",
|
35 |
+
"my_init_kwargs": "{'plans': {'dataset_name': 'Dataset004_WML', 'plans_name': 'nnUNetPlans', 'original_median_spacing_after_transp': [1.0, 0.9000000059604645, 0.9000000059604645], 'original_median_shape_after_transp': [144, 177, 190], 'image_reader_writer': 'SimpleITKIO', 'transpose_forward': [2, 0, 1], 'transpose_backward': [1, 2, 0], 'configurations': {'2d': {'data_identifier': 'nnUNetPlans_2d', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 106, 'patch_size': [160, 192], 'median_image_size_in_voxels': [154.0, 185.0], 'spacing': [0.9000000059604645, 0.9000000059604645], 'normalization_schemes': ['ZScoreNormalization'], 'use_mask_for_norm': [True], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_class_name': 'dynamic_network_architectures.architectures.unet.PlainConvUNet', 'arch_kwargs': {'n_stages': 6, 'features_per_stage': [32, 64, 128, 256, 512, 512], 'conv_op': 'torch.nn.modules.conv.Conv2d', 'kernel_sizes': [[3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3]], 'strides': [[1, 1], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2]], 'n_conv_per_stage': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'conv_bias': True, 'norm_op': 'torch.nn.modules.instancenorm.InstanceNorm2d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': True}, '3d_fullres': {'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [112, 128, 160], 'median_image_size_in_voxels': [133.0, 154.0, 185.0], 'spacing': [1.0, 0.9000000059604645, 0.9000000059604645], 'normalization_schemes': ['ZScoreNormalization'], 'use_mask_for_norm': [True], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_class_name': 'dynamic_network_architectures.architectures.unet.PlainConvUNet', 'arch_kwargs': {'n_stages': 6, 'features_per_stage': [32, 64, 128, 256, 320, 320], 'conv_op': 'torch.nn.modules.conv.Conv3d', 'kernel_sizes': [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'strides': [[1, 1, 1], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [1, 2, 2]], 'n_conv_per_stage': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'conv_bias': True, 'norm_op': 'torch.nn.modules.instancenorm.InstanceNorm3d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': False}}, 'experiment_planner_used': 'ExperimentPlanner', 'label_manager': 'LabelManager', 'foreground_intensity_properties_per_channel': {'0': {'max': 3688541.5, 'mean': 63206.06989644738, 'median': 167.43850708007812, 'min': 0.0, 'percentile_00_5': 47.72833251953125, 'percentile_99_5': 2077017.5018749982, 'std': 327313.09328078595}}}, 'configuration': '3d_fullres', 'fold': 3, 'dataset_json': {'channel_names': {'0': 'FLAIR'}, 'labels': {'background': 0, 'Lesion': 1}, 'numTraining': 668, 'file_ending': '.nii.gz', 'overwrite_image_reader_writer': 'SimpleITKIO'}, 'unpack_dataset': True, 'device': device(type='cuda')}",
|
36 |
+
"network": "OptimizedModule",
|
37 |
+
"num_epochs": "8000",
|
38 |
+
"num_input_channels": "1",
|
39 |
+
"num_iterations_per_epoch": "250",
|
40 |
+
"num_val_iterations_per_epoch": "50",
|
41 |
+
"optimizer": "SGD (\nParameter Group 0\n dampening: 0\n differentiable: False\n foreach: None\n initial_lr: 0.01\n lr: 0.01\n maximize: False\n momentum: 0.99\n nesterov: True\n weight_decay: 3e-05\n)",
|
42 |
+
"output_folder": "/sc/arion/projects/becklab/Francesco/Models/nnUNet_v2/nnUNet_trained_models/Dataset004_WML/nnUNetTrainer_8000epochs__nnUNetPlans__3d_fullres/fold_3",
|
43 |
+
"output_folder_base": "/sc/arion/projects/becklab/Francesco/Models/nnUNet_v2/nnUNet_trained_models/Dataset004_WML/nnUNetTrainer_8000epochs__nnUNetPlans__3d_fullres",
|
44 |
+
"oversample_foreground_percent": "0.33",
|
45 |
+
"plans_manager": "{'dataset_name': 'Dataset004_WML', 'plans_name': 'nnUNetPlans', 'original_median_spacing_after_transp': [1.0, 0.9000000059604645, 0.9000000059604645], 'original_median_shape_after_transp': [144, 177, 190], 'image_reader_writer': 'SimpleITKIO', 'transpose_forward': [2, 0, 1], 'transpose_backward': [1, 2, 0], 'configurations': {'2d': {'data_identifier': 'nnUNetPlans_2d', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 106, 'patch_size': [160, 192], 'median_image_size_in_voxels': [154.0, 185.0], 'spacing': [0.9000000059604645, 0.9000000059604645], 'normalization_schemes': ['ZScoreNormalization'], 'use_mask_for_norm': [True], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_class_name': 'dynamic_network_architectures.architectures.unet.PlainConvUNet', 'arch_kwargs': {'n_stages': 6, 'features_per_stage': [32, 64, 128, 256, 512, 512], 'conv_op': 'torch.nn.modules.conv.Conv2d', 'kernel_sizes': [[3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3]], 'strides': [[1, 1], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2]], 'n_conv_per_stage': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'conv_bias': True, 'norm_op': 'torch.nn.modules.instancenorm.InstanceNorm2d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': True}, '3d_fullres': {'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [112, 128, 160], 'median_image_size_in_voxels': [133.0, 154.0, 185.0], 'spacing': [1.0, 0.9000000059604645, 0.9000000059604645], 'normalization_schemes': ['ZScoreNormalization'], 'use_mask_for_norm': [True], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_class_name': 'dynamic_network_architectures.architectures.unet.PlainConvUNet', 'arch_kwargs': {'n_stages': 6, 'features_per_stage': [32, 64, 128, 256, 320, 320], 'conv_op': 'torch.nn.modules.conv.Conv3d', 'kernel_sizes': [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'strides': [[1, 1, 1], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [1, 2, 2]], 'n_conv_per_stage': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'conv_bias': True, 'norm_op': 'torch.nn.modules.instancenorm.InstanceNorm3d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': False}}, 'experiment_planner_used': 'ExperimentPlanner', 'label_manager': 'LabelManager', 'foreground_intensity_properties_per_channel': {'0': {'max': 3688541.5, 'mean': 63206.06989644738, 'median': 167.43850708007812, 'min': 0.0, 'percentile_00_5': 47.72833251953125, 'percentile_99_5': 2077017.5018749982, 'std': 327313.09328078595}}}",
|
46 |
+
"preprocessed_dataset_folder": "/sc/arion/projects/becklab/Francesco/Models/nnUNet_v2/nnUNet_preprocessed/Dataset004_WML/nnUNetPlans_3d_fullres",
|
47 |
+
"preprocessed_dataset_folder_base": "/sc/arion/projects/becklab/Francesco/Models/nnUNet_v2/nnUNet_preprocessed/Dataset004_WML",
|
48 |
+
"save_every": "50",
|
49 |
+
"torch_version": "2.1.2+cu121",
|
50 |
+
"unpack_dataset": "True",
|
51 |
+
"was_initialized": "True",
|
52 |
+
"weight_decay": "3e-05"
|
53 |
+
}
|
Dataset004_WML/nnUNetTrainer_8000epochs__nnUNetPlans__3d_fullres/fold_3/progress.png
ADDED
![]() |
Dataset004_WML/nnUNetTrainer_8000epochs__nnUNetPlans__3d_fullres/fold_3/training_log_2024_11_21_10_40_15.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
Dataset004_WML/nnUNetTrainer_8000epochs__nnUNetPlans__3d_fullres/fold_4/checkpoint_best.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a704b0b76ba227c44e687b187b54a84b3e874796ad29ad1dd84ea9aad28f32d9
|
3 |
+
size 249197474
|
Dataset004_WML/nnUNetTrainer_8000epochs__nnUNetPlans__3d_fullres/fold_4/checkpoint_final.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ff723a2eda28a7f78f75d96a993d029ea8f65aa3657f5aea7caab9b217792df2
|
3 |
+
size 249220606
|
Dataset004_WML/nnUNetTrainer_8000epochs__nnUNetPlans__3d_fullres/fold_4/debug.json
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_best_ema": "None",
|
3 |
+
"batch_size": "2",
|
4 |
+
"configuration_manager": "{'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [112, 128, 160], 'median_image_size_in_voxels': [133.0, 154.0, 185.0], 'spacing': [1.0, 0.9000000059604645, 0.9000000059604645], 'normalization_schemes': ['ZScoreNormalization'], 'use_mask_for_norm': [True], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_class_name': 'dynamic_network_architectures.architectures.unet.PlainConvUNet', 'arch_kwargs': {'n_stages': 6, 'features_per_stage': [32, 64, 128, 256, 320, 320], 'conv_op': 'torch.nn.modules.conv.Conv3d', 'kernel_sizes': [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'strides': [[1, 1, 1], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [1, 2, 2]], 'n_conv_per_stage': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'conv_bias': True, 'norm_op': 'torch.nn.modules.instancenorm.InstanceNorm3d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': False}",
|
5 |
+
"configuration_name": "3d_fullres",
|
6 |
+
"cudnn_version": 8902,
|
7 |
+
"current_epoch": "0",
|
8 |
+
"dataloader_train": "<batchgenerators.dataloading.nondet_multi_threaded_augmenter.NonDetMultiThreadedAugmenter object at 0x1504e8ddbdf0>",
|
9 |
+
"dataloader_train.generator": "<nnunetv2.training.dataloading.data_loader_3d.nnUNetDataLoader3D object at 0x1504e8ddb1f0>",
|
10 |
+
"dataloader_train.num_processes": "12",
|
11 |
+
"dataloader_train.transform": "None",
|
12 |
+
"dataloader_val": "<batchgenerators.dataloading.nondet_multi_threaded_augmenter.NonDetMultiThreadedAugmenter object at 0x1504e8ddb4f0>",
|
13 |
+
"dataloader_val.generator": "<nnunetv2.training.dataloading.data_loader_3d.nnUNetDataLoader3D object at 0x1504e8ddb2b0>",
|
14 |
+
"dataloader_val.num_processes": "6",
|
15 |
+
"dataloader_val.transform": "None",
|
16 |
+
"dataset_json": "{'channel_names': {'0': 'FLAIR'}, 'labels': {'background': 0, 'Lesion': 1}, 'numTraining': 668, 'file_ending': '.nii.gz', 'overwrite_image_reader_writer': 'SimpleITKIO'}",
|
17 |
+
"device": "cuda:0",
|
18 |
+
"disable_checkpointing": "False",
|
19 |
+
"enable_deep_supervision": "True",
|
20 |
+
"fold": "4",
|
21 |
+
"folder_with_segs_from_previous_stage": "None",
|
22 |
+
"gpu_name": "NVIDIA H100 80GB HBM3",
|
23 |
+
"grad_scaler": "<torch.cuda.amp.grad_scaler.GradScaler object at 0x1504e95a3f70>",
|
24 |
+
"hostname": "lg02e16",
|
25 |
+
"inference_allowed_mirroring_axes": "(0, 1, 2)",
|
26 |
+
"initial_lr": "0.01",
|
27 |
+
"is_cascaded": "False",
|
28 |
+
"is_ddp": "False",
|
29 |
+
"label_manager": "<nnunetv2.utilities.label_handling.label_handling.LabelManager object at 0x1504e95a3fd0>",
|
30 |
+
"local_rank": "0",
|
31 |
+
"log_file": "/sc/arion/projects/becklab/Francesco/Models/nnUNet_v2/nnUNet_trained_models/Dataset004_WML/nnUNetTrainer_8000epochs__nnUNetPlans__3d_fullres/fold_4/training_log_2024_11_21_10_40_22.txt",
|
32 |
+
"logger": "<nnunetv2.training.logging.nnunet_logger.nnUNetLogger object at 0x1504e95a3dc0>",
|
33 |
+
"loss": "DeepSupervisionWrapper(\n (loss): DC_and_CE_loss(\n (ce): RobustCrossEntropyLoss()\n (dc): OptimizedModule(\n (_orig_mod): MemoryEfficientSoftDiceLoss()\n )\n )\n)",
|
34 |
+
"lr_scheduler": "<nnunetv2.training.lr_scheduler.polylr.PolyLRScheduler object at 0x1504e8ec0d60>",
|
35 |
+
"my_init_kwargs": "{'plans': {'dataset_name': 'Dataset004_WML', 'plans_name': 'nnUNetPlans', 'original_median_spacing_after_transp': [1.0, 0.9000000059604645, 0.9000000059604645], 'original_median_shape_after_transp': [144, 177, 190], 'image_reader_writer': 'SimpleITKIO', 'transpose_forward': [2, 0, 1], 'transpose_backward': [1, 2, 0], 'configurations': {'2d': {'data_identifier': 'nnUNetPlans_2d', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 106, 'patch_size': [160, 192], 'median_image_size_in_voxels': [154.0, 185.0], 'spacing': [0.9000000059604645, 0.9000000059604645], 'normalization_schemes': ['ZScoreNormalization'], 'use_mask_for_norm': [True], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_class_name': 'dynamic_network_architectures.architectures.unet.PlainConvUNet', 'arch_kwargs': {'n_stages': 6, 'features_per_stage': [32, 64, 128, 256, 512, 512], 'conv_op': 'torch.nn.modules.conv.Conv2d', 'kernel_sizes': [[3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3]], 'strides': [[1, 1], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2]], 'n_conv_per_stage': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'conv_bias': True, 'norm_op': 'torch.nn.modules.instancenorm.InstanceNorm2d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': True}, '3d_fullres': {'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [112, 128, 160], 'median_image_size_in_voxels': [133.0, 154.0, 185.0], 'spacing': [1.0, 0.9000000059604645, 0.9000000059604645], 'normalization_schemes': ['ZScoreNormalization'], 'use_mask_for_norm': [True], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_class_name': 'dynamic_network_architectures.architectures.unet.PlainConvUNet', 'arch_kwargs': {'n_stages': 6, 'features_per_stage': [32, 64, 128, 256, 320, 320], 'conv_op': 'torch.nn.modules.conv.Conv3d', 'kernel_sizes': [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'strides': [[1, 1, 1], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [1, 2, 2]], 'n_conv_per_stage': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'conv_bias': True, 'norm_op': 'torch.nn.modules.instancenorm.InstanceNorm3d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': False}}, 'experiment_planner_used': 'ExperimentPlanner', 'label_manager': 'LabelManager', 'foreground_intensity_properties_per_channel': {'0': {'max': 3688541.5, 'mean': 63206.06989644738, 'median': 167.43850708007812, 'min': 0.0, 'percentile_00_5': 47.72833251953125, 'percentile_99_5': 2077017.5018749982, 'std': 327313.09328078595}}}, 'configuration': '3d_fullres', 'fold': 4, 'dataset_json': {'channel_names': {'0': 'FLAIR'}, 'labels': {'background': 0, 'Lesion': 1}, 'numTraining': 668, 'file_ending': '.nii.gz', 'overwrite_image_reader_writer': 'SimpleITKIO'}, 'unpack_dataset': True, 'device': device(type='cuda')}",
|
36 |
+
"network": "OptimizedModule",
|
37 |
+
"num_epochs": "8000",
|
38 |
+
"num_input_channels": "1",
|
39 |
+
"num_iterations_per_epoch": "250",
|
40 |
+
"num_val_iterations_per_epoch": "50",
|
41 |
+
"optimizer": "SGD (\nParameter Group 0\n dampening: 0\n differentiable: False\n foreach: None\n initial_lr: 0.01\n lr: 0.01\n maximize: False\n momentum: 0.99\n nesterov: True\n weight_decay: 3e-05\n)",
|
42 |
+
"output_folder": "/sc/arion/projects/becklab/Francesco/Models/nnUNet_v2/nnUNet_trained_models/Dataset004_WML/nnUNetTrainer_8000epochs__nnUNetPlans__3d_fullres/fold_4",
|
43 |
+
"output_folder_base": "/sc/arion/projects/becklab/Francesco/Models/nnUNet_v2/nnUNet_trained_models/Dataset004_WML/nnUNetTrainer_8000epochs__nnUNetPlans__3d_fullres",
|
44 |
+
"oversample_foreground_percent": "0.33",
|
45 |
+
"plans_manager": "{'dataset_name': 'Dataset004_WML', 'plans_name': 'nnUNetPlans', 'original_median_spacing_after_transp': [1.0, 0.9000000059604645, 0.9000000059604645], 'original_median_shape_after_transp': [144, 177, 190], 'image_reader_writer': 'SimpleITKIO', 'transpose_forward': [2, 0, 1], 'transpose_backward': [1, 2, 0], 'configurations': {'2d': {'data_identifier': 'nnUNetPlans_2d', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 106, 'patch_size': [160, 192], 'median_image_size_in_voxels': [154.0, 185.0], 'spacing': [0.9000000059604645, 0.9000000059604645], 'normalization_schemes': ['ZScoreNormalization'], 'use_mask_for_norm': [True], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_class_name': 'dynamic_network_architectures.architectures.unet.PlainConvUNet', 'arch_kwargs': {'n_stages': 6, 'features_per_stage': [32, 64, 128, 256, 512, 512], 'conv_op': 'torch.nn.modules.conv.Conv2d', 'kernel_sizes': [[3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3]], 'strides': [[1, 1], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2]], 'n_conv_per_stage': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'conv_bias': True, 'norm_op': 'torch.nn.modules.instancenorm.InstanceNorm2d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': True}, '3d_fullres': {'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [112, 128, 160], 'median_image_size_in_voxels': [133.0, 154.0, 185.0], 'spacing': [1.0, 0.9000000059604645, 0.9000000059604645], 'normalization_schemes': ['ZScoreNormalization'], 'use_mask_for_norm': [True], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_class_name': 'dynamic_network_architectures.architectures.unet.PlainConvUNet', 'arch_kwargs': {'n_stages': 6, 'features_per_stage': [32, 64, 128, 256, 320, 320], 'conv_op': 'torch.nn.modules.conv.Conv3d', 'kernel_sizes': [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'strides': [[1, 1, 1], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [1, 2, 2]], 'n_conv_per_stage': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'conv_bias': True, 'norm_op': 'torch.nn.modules.instancenorm.InstanceNorm3d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': False}}, 'experiment_planner_used': 'ExperimentPlanner', 'label_manager': 'LabelManager', 'foreground_intensity_properties_per_channel': {'0': {'max': 3688541.5, 'mean': 63206.06989644738, 'median': 167.43850708007812, 'min': 0.0, 'percentile_00_5': 47.72833251953125, 'percentile_99_5': 2077017.5018749982, 'std': 327313.09328078595}}}",
|
46 |
+
"preprocessed_dataset_folder": "/sc/arion/projects/becklab/Francesco/Models/nnUNet_v2/nnUNet_preprocessed/Dataset004_WML/nnUNetPlans_3d_fullres",
|
47 |
+
"preprocessed_dataset_folder_base": "/sc/arion/projects/becklab/Francesco/Models/nnUNet_v2/nnUNet_preprocessed/Dataset004_WML",
|
48 |
+
"save_every": "50",
|
49 |
+
"torch_version": "2.1.2+cu121",
|
50 |
+
"unpack_dataset": "True",
|
51 |
+
"was_initialized": "True",
|
52 |
+
"weight_decay": "3e-05"
|
53 |
+
}
|
Dataset004_WML/nnUNetTrainer_8000epochs__nnUNetPlans__3d_fullres/fold_4/progress.png
ADDED
![]() |
Dataset004_WML/nnUNetTrainer_8000epochs__nnUNetPlans__3d_fullres/fold_4/training_log_2024_11_21_10_40_22.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
Dataset004_WML/nnUNetTrainer_8000epochs__nnUNetPlans__3d_fullres/plans.json
ADDED
@@ -0,0 +1,345 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_name": "Dataset004_WML",
|
3 |
+
"plans_name": "nnUNetPlans",
|
4 |
+
"original_median_spacing_after_transp": [
|
5 |
+
1.0,
|
6 |
+
0.9000000059604645,
|
7 |
+
0.9000000059604645
|
8 |
+
],
|
9 |
+
"original_median_shape_after_transp": [
|
10 |
+
144,
|
11 |
+
177,
|
12 |
+
190
|
13 |
+
],
|
14 |
+
"image_reader_writer": "SimpleITKIO",
|
15 |
+
"transpose_forward": [
|
16 |
+
2,
|
17 |
+
0,
|
18 |
+
1
|
19 |
+
],
|
20 |
+
"transpose_backward": [
|
21 |
+
1,
|
22 |
+
2,
|
23 |
+
0
|
24 |
+
],
|
25 |
+
"configurations": {
|
26 |
+
"2d": {
|
27 |
+
"data_identifier": "nnUNetPlans_2d",
|
28 |
+
"preprocessor_name": "DefaultPreprocessor",
|
29 |
+
"batch_size": 106,
|
30 |
+
"patch_size": [
|
31 |
+
160,
|
32 |
+
192
|
33 |
+
],
|
34 |
+
"median_image_size_in_voxels": [
|
35 |
+
154.0,
|
36 |
+
185.0
|
37 |
+
],
|
38 |
+
"spacing": [
|
39 |
+
0.9000000059604645,
|
40 |
+
0.9000000059604645
|
41 |
+
],
|
42 |
+
"normalization_schemes": [
|
43 |
+
"ZScoreNormalization"
|
44 |
+
],
|
45 |
+
"use_mask_for_norm": [
|
46 |
+
true
|
47 |
+
],
|
48 |
+
"resampling_fn_data": "resample_data_or_seg_to_shape",
|
49 |
+
"resampling_fn_seg": "resample_data_or_seg_to_shape",
|
50 |
+
"resampling_fn_data_kwargs": {
|
51 |
+
"is_seg": false,
|
52 |
+
"order": 3,
|
53 |
+
"order_z": 0,
|
54 |
+
"force_separate_z": null
|
55 |
+
},
|
56 |
+
"resampling_fn_seg_kwargs": {
|
57 |
+
"is_seg": true,
|
58 |
+
"order": 1,
|
59 |
+
"order_z": 0,
|
60 |
+
"force_separate_z": null
|
61 |
+
},
|
62 |
+
"resampling_fn_probabilities": "resample_data_or_seg_to_shape",
|
63 |
+
"resampling_fn_probabilities_kwargs": {
|
64 |
+
"is_seg": false,
|
65 |
+
"order": 1,
|
66 |
+
"order_z": 0,
|
67 |
+
"force_separate_z": null
|
68 |
+
},
|
69 |
+
"architecture": {
|
70 |
+
"network_class_name": "dynamic_network_architectures.architectures.unet.PlainConvUNet",
|
71 |
+
"arch_kwargs": {
|
72 |
+
"n_stages": 6,
|
73 |
+
"features_per_stage": [
|
74 |
+
32,
|
75 |
+
64,
|
76 |
+
128,
|
77 |
+
256,
|
78 |
+
512,
|
79 |
+
512
|
80 |
+
],
|
81 |
+
"conv_op": "torch.nn.modules.conv.Conv2d",
|
82 |
+
"kernel_sizes": [
|
83 |
+
[
|
84 |
+
3,
|
85 |
+
3
|
86 |
+
],
|
87 |
+
[
|
88 |
+
3,
|
89 |
+
3
|
90 |
+
],
|
91 |
+
[
|
92 |
+
3,
|
93 |
+
3
|
94 |
+
],
|
95 |
+
[
|
96 |
+
3,
|
97 |
+
3
|
98 |
+
],
|
99 |
+
[
|
100 |
+
3,
|
101 |
+
3
|
102 |
+
],
|
103 |
+
[
|
104 |
+
3,
|
105 |
+
3
|
106 |
+
]
|
107 |
+
],
|
108 |
+
"strides": [
|
109 |
+
[
|
110 |
+
1,
|
111 |
+
1
|
112 |
+
],
|
113 |
+
[
|
114 |
+
2,
|
115 |
+
2
|
116 |
+
],
|
117 |
+
[
|
118 |
+
2,
|
119 |
+
2
|
120 |
+
],
|
121 |
+
[
|
122 |
+
2,
|
123 |
+
2
|
124 |
+
],
|
125 |
+
[
|
126 |
+
2,
|
127 |
+
2
|
128 |
+
],
|
129 |
+
[
|
130 |
+
2,
|
131 |
+
2
|
132 |
+
]
|
133 |
+
],
|
134 |
+
"n_conv_per_stage": [
|
135 |
+
2,
|
136 |
+
2,
|
137 |
+
2,
|
138 |
+
2,
|
139 |
+
2,
|
140 |
+
2
|
141 |
+
],
|
142 |
+
"n_conv_per_stage_decoder": [
|
143 |
+
2,
|
144 |
+
2,
|
145 |
+
2,
|
146 |
+
2,
|
147 |
+
2
|
148 |
+
],
|
149 |
+
"conv_bias": true,
|
150 |
+
"norm_op": "torch.nn.modules.instancenorm.InstanceNorm2d",
|
151 |
+
"norm_op_kwargs": {
|
152 |
+
"eps": 1e-05,
|
153 |
+
"affine": true
|
154 |
+
},
|
155 |
+
"dropout_op": null,
|
156 |
+
"dropout_op_kwargs": null,
|
157 |
+
"nonlin": "torch.nn.LeakyReLU",
|
158 |
+
"nonlin_kwargs": {
|
159 |
+
"inplace": true
|
160 |
+
}
|
161 |
+
},
|
162 |
+
"_kw_requires_import": [
|
163 |
+
"conv_op",
|
164 |
+
"norm_op",
|
165 |
+
"dropout_op",
|
166 |
+
"nonlin"
|
167 |
+
]
|
168 |
+
},
|
169 |
+
"batch_dice": true
|
170 |
+
},
|
171 |
+
"3d_fullres": {
|
172 |
+
"data_identifier": "nnUNetPlans_3d_fullres",
|
173 |
+
"preprocessor_name": "DefaultPreprocessor",
|
174 |
+
"batch_size": 2,
|
175 |
+
"patch_size": [
|
176 |
+
112,
|
177 |
+
128,
|
178 |
+
160
|
179 |
+
],
|
180 |
+
"median_image_size_in_voxels": [
|
181 |
+
133.0,
|
182 |
+
154.0,
|
183 |
+
185.0
|
184 |
+
],
|
185 |
+
"spacing": [
|
186 |
+
1.0,
|
187 |
+
0.9000000059604645,
|
188 |
+
0.9000000059604645
|
189 |
+
],
|
190 |
+
"normalization_schemes": [
|
191 |
+
"ZScoreNormalization"
|
192 |
+
],
|
193 |
+
"use_mask_for_norm": [
|
194 |
+
true
|
195 |
+
],
|
196 |
+
"resampling_fn_data": "resample_data_or_seg_to_shape",
|
197 |
+
"resampling_fn_seg": "resample_data_or_seg_to_shape",
|
198 |
+
"resampling_fn_data_kwargs": {
|
199 |
+
"is_seg": false,
|
200 |
+
"order": 3,
|
201 |
+
"order_z": 0,
|
202 |
+
"force_separate_z": null
|
203 |
+
},
|
204 |
+
"resampling_fn_seg_kwargs": {
|
205 |
+
"is_seg": true,
|
206 |
+
"order": 1,
|
207 |
+
"order_z": 0,
|
208 |
+
"force_separate_z": null
|
209 |
+
},
|
210 |
+
"resampling_fn_probabilities": "resample_data_or_seg_to_shape",
|
211 |
+
"resampling_fn_probabilities_kwargs": {
|
212 |
+
"is_seg": false,
|
213 |
+
"order": 1,
|
214 |
+
"order_z": 0,
|
215 |
+
"force_separate_z": null
|
216 |
+
},
|
217 |
+
"architecture": {
|
218 |
+
"network_class_name": "dynamic_network_architectures.architectures.unet.PlainConvUNet",
|
219 |
+
"arch_kwargs": {
|
220 |
+
"n_stages": 6,
|
221 |
+
"features_per_stage": [
|
222 |
+
32,
|
223 |
+
64,
|
224 |
+
128,
|
225 |
+
256,
|
226 |
+
320,
|
227 |
+
320
|
228 |
+
],
|
229 |
+
"conv_op": "torch.nn.modules.conv.Conv3d",
|
230 |
+
"kernel_sizes": [
|
231 |
+
[
|
232 |
+
3,
|
233 |
+
3,
|
234 |
+
3
|
235 |
+
],
|
236 |
+
[
|
237 |
+
3,
|
238 |
+
3,
|
239 |
+
3
|
240 |
+
],
|
241 |
+
[
|
242 |
+
3,
|
243 |
+
3,
|
244 |
+
3
|
245 |
+
],
|
246 |
+
[
|
247 |
+
3,
|
248 |
+
3,
|
249 |
+
3
|
250 |
+
],
|
251 |
+
[
|
252 |
+
3,
|
253 |
+
3,
|
254 |
+
3
|
255 |
+
],
|
256 |
+
[
|
257 |
+
3,
|
258 |
+
3,
|
259 |
+
3
|
260 |
+
]
|
261 |
+
],
|
262 |
+
"strides": [
|
263 |
+
[
|
264 |
+
1,
|
265 |
+
1,
|
266 |
+
1
|
267 |
+
],
|
268 |
+
[
|
269 |
+
2,
|
270 |
+
2,
|
271 |
+
2
|
272 |
+
],
|
273 |
+
[
|
274 |
+
2,
|
275 |
+
2,
|
276 |
+
2
|
277 |
+
],
|
278 |
+
[
|
279 |
+
2,
|
280 |
+
2,
|
281 |
+
2
|
282 |
+
],
|
283 |
+
[
|
284 |
+
2,
|
285 |
+
2,
|
286 |
+
2
|
287 |
+
],
|
288 |
+
[
|
289 |
+
1,
|
290 |
+
2,
|
291 |
+
2
|
292 |
+
]
|
293 |
+
],
|
294 |
+
"n_conv_per_stage": [
|
295 |
+
2,
|
296 |
+
2,
|
297 |
+
2,
|
298 |
+
2,
|
299 |
+
2,
|
300 |
+
2
|
301 |
+
],
|
302 |
+
"n_conv_per_stage_decoder": [
|
303 |
+
2,
|
304 |
+
2,
|
305 |
+
2,
|
306 |
+
2,
|
307 |
+
2
|
308 |
+
],
|
309 |
+
"conv_bias": true,
|
310 |
+
"norm_op": "torch.nn.modules.instancenorm.InstanceNorm3d",
|
311 |
+
"norm_op_kwargs": {
|
312 |
+
"eps": 1e-05,
|
313 |
+
"affine": true
|
314 |
+
},
|
315 |
+
"dropout_op": null,
|
316 |
+
"dropout_op_kwargs": null,
|
317 |
+
"nonlin": "torch.nn.LeakyReLU",
|
318 |
+
"nonlin_kwargs": {
|
319 |
+
"inplace": true
|
320 |
+
}
|
321 |
+
},
|
322 |
+
"_kw_requires_import": [
|
323 |
+
"conv_op",
|
324 |
+
"norm_op",
|
325 |
+
"dropout_op",
|
326 |
+
"nonlin"
|
327 |
+
]
|
328 |
+
},
|
329 |
+
"batch_dice": false
|
330 |
+
}
|
331 |
+
},
|
332 |
+
"experiment_planner_used": "ExperimentPlanner",
|
333 |
+
"label_manager": "LabelManager",
|
334 |
+
"foreground_intensity_properties_per_channel": {
|
335 |
+
"0": {
|
336 |
+
"max": 3688541.5,
|
337 |
+
"mean": 63206.06989644738,
|
338 |
+
"median": 167.43850708007812,
|
339 |
+
"min": 0.0,
|
340 |
+
"percentile_00_5": 47.72833251953125,
|
341 |
+
"percentile_99_5": 2077017.5018749982,
|
342 |
+
"std": 327313.09328078595
|
343 |
+
}
|
344 |
+
}
|
345 |
+
}
|