--- language: - it license: apache-2.0 base_model: openai/whisper-small tags: - it-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Small IT - GoodOnions results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: it split: test[:2500] args: 'config: it, split: test' metrics: - name: Wer type: wer value: 83.94127565077929 --- # Whisper Small IT - GoodOnions This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.4681 - Wer: 83.9413 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1517 | 1.6 | 1000 | 0.3859 | 227.6309 | | 0.0313 | 3.2 | 2000 | 0.4126 | 50.3681 | | 0.0156 | 4.8 | 3000 | 0.4367 | 67.6440 | | 0.0038 | 6.4 | 4000 | 0.4681 | 83.9413 | ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0