File size: 5,966 Bytes
88bbcbf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import torch
import torch.nn as nn
import numpy as np
import os
from util import *


class Face_3DMM(nn.Module):
    def __init__(self, modelpath, id_dim, exp_dim, tex_dim, point_num):
        super(Face_3DMM, self).__init__()
        # id_dim = 100
        # exp_dim = 79
        # tex_dim = 100
        self.point_num = point_num
        DMM_info = np.load(
            os.path.join(modelpath, "3DMM_info.npy"), allow_pickle=True
        ).item()
        base_id = DMM_info["b_shape"][:id_dim, :]
        mu_id = DMM_info["mu_shape"]
        base_exp = DMM_info["b_exp"][:exp_dim, :]
        mu_exp = DMM_info["mu_exp"]
        mu = mu_id + mu_exp
        mu = mu.reshape(-1, 3)
        for i in range(3):
            mu[:, i] -= np.mean(mu[:, i])
        mu = mu.reshape(-1)
        self.base_id = torch.as_tensor(base_id).cuda() / 100000.0
        self.base_exp = torch.as_tensor(base_exp).cuda() / 100000.0
        self.mu = torch.as_tensor(mu).cuda() / 100000.0
        base_tex = DMM_info["b_tex"][:tex_dim, :]
        mu_tex = DMM_info["mu_tex"]
        self.base_tex = torch.as_tensor(base_tex).cuda()
        self.mu_tex = torch.as_tensor(mu_tex).cuda()
        sig_id = DMM_info["sig_shape"][:id_dim]
        sig_tex = DMM_info["sig_tex"][:tex_dim]
        sig_exp = DMM_info["sig_exp"][:exp_dim]
        self.sig_id = torch.as_tensor(sig_id).cuda()
        self.sig_tex = torch.as_tensor(sig_tex).cuda()
        self.sig_exp = torch.as_tensor(sig_exp).cuda()

        keys_info = np.load(
            os.path.join(modelpath, "keys_info.npy"), allow_pickle=True
        ).item()
        self.keyinds = torch.as_tensor(keys_info["keyinds"]).cuda()
        self.left_contours = torch.as_tensor(keys_info["left_contour"]).cuda()
        self.right_contours = torch.as_tensor(keys_info["right_contour"]).cuda()
        self.rigid_ids = torch.as_tensor(keys_info["rigid_ids"]).cuda()

    def get_3dlandmarks(self, id_para, exp_para, euler_angle, trans, focal_length, cxy):
        id_para = id_para * self.sig_id
        exp_para = exp_para * self.sig_exp
        batch_size = id_para.shape[0]
        num_per_contour = self.left_contours.shape[1]
        left_contours_flat = self.left_contours.reshape(-1)
        right_contours_flat = self.right_contours.reshape(-1)
        sel_index = torch.cat(
            (
                3 * left_contours_flat.unsqueeze(1),
                3 * left_contours_flat.unsqueeze(1) + 1,
                3 * left_contours_flat.unsqueeze(1) + 2,
            ),
            dim=1,
        ).reshape(-1)
        left_geometry = (
            torch.mm(id_para, self.base_id[:, sel_index])
            + torch.mm(exp_para, self.base_exp[:, sel_index])
            + self.mu[sel_index]
        )
        left_geometry = left_geometry.view(batch_size, -1, 3)
        proj_x = forward_transform(
            left_geometry, euler_angle, trans, focal_length, cxy
        )[:, :, 0]
        proj_x = proj_x.reshape(batch_size, 8, num_per_contour)
        arg_min = proj_x.argmin(dim=2)
        left_geometry = left_geometry.view(batch_size * 8, num_per_contour, 3)
        left_3dlands = left_geometry[
            torch.arange(batch_size * 8), arg_min.view(-1), :
        ].view(batch_size, 8, 3)

        sel_index = torch.cat(
            (
                3 * right_contours_flat.unsqueeze(1),
                3 * right_contours_flat.unsqueeze(1) + 1,
                3 * right_contours_flat.unsqueeze(1) + 2,
            ),
            dim=1,
        ).reshape(-1)
        right_geometry = (
            torch.mm(id_para, self.base_id[:, sel_index])
            + torch.mm(exp_para, self.base_exp[:, sel_index])
            + self.mu[sel_index]
        )
        right_geometry = right_geometry.view(batch_size, -1, 3)
        proj_x = forward_transform(
            right_geometry, euler_angle, trans, focal_length, cxy
        )[:, :, 0]
        proj_x = proj_x.reshape(batch_size, 8, num_per_contour)
        arg_max = proj_x.argmax(dim=2)
        right_geometry = right_geometry.view(batch_size * 8, num_per_contour, 3)
        right_3dlands = right_geometry[
            torch.arange(batch_size * 8), arg_max.view(-1), :
        ].view(batch_size, 8, 3)

        sel_index = torch.cat(
            (
                3 * self.keyinds.unsqueeze(1),
                3 * self.keyinds.unsqueeze(1) + 1,
                3 * self.keyinds.unsqueeze(1) + 2,
            ),
            dim=1,
        ).reshape(-1)
        geometry = (
            torch.mm(id_para, self.base_id[:, sel_index])
            + torch.mm(exp_para, self.base_exp[:, sel_index])
            + self.mu[sel_index]
        )
        lands_3d = geometry.view(-1, self.keyinds.shape[0], 3)
        lands_3d[:, :8, :] = left_3dlands
        lands_3d[:, 9:17, :] = right_3dlands
        return lands_3d

    def forward_geo_sub(self, id_para, exp_para, sub_index):
        id_para = id_para * self.sig_id
        exp_para = exp_para * self.sig_exp
        sel_index = torch.cat(
            (
                3 * sub_index.unsqueeze(1),
                3 * sub_index.unsqueeze(1) + 1,
                3 * sub_index.unsqueeze(1) + 2,
            ),
            dim=1,
        ).reshape(-1)
        geometry = (
            torch.mm(id_para, self.base_id[:, sel_index])
            + torch.mm(exp_para, self.base_exp[:, sel_index])
            + self.mu[sel_index]
        )
        return geometry.reshape(-1, sub_index.shape[0], 3)

    def forward_geo(self, id_para, exp_para):
        id_para = id_para * self.sig_id
        exp_para = exp_para * self.sig_exp
        geometry = (
            torch.mm(id_para, self.base_id)
            + torch.mm(exp_para, self.base_exp)
            + self.mu
        )
        return geometry.reshape(-1, self.point_num, 3)

    def forward_tex(self, tex_para):
        tex_para = tex_para * self.sig_tex
        texture = torch.mm(tex_para, self.base_tex) + self.mu_tex
        return texture.reshape(-1, self.point_num, 3)