File size: 6,803 Bytes
88bbcbf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import torch
import torch.nn as nn
import render_util
import geo_transform
import numpy as np


def compute_tri_normal(geometry, tris):
    geometry = geometry.permute(0, 2, 1)
    tri_1 = tris[:, 0]
    tri_2 = tris[:, 1]
    tri_3 = tris[:, 2]

    vert_1 = torch.index_select(geometry, 2, tri_1)
    vert_2 = torch.index_select(geometry, 2, tri_2)
    vert_3 = torch.index_select(geometry, 2, tri_3)

    nnorm = torch.cross(vert_2 - vert_1, vert_3 - vert_1, 1)
    normal = nn.functional.normalize(nnorm).permute(0, 2, 1)
    return normal


class Compute_normal_base(torch.autograd.Function):
    @staticmethod
    def forward(ctx, normal):
        (normal_b,) = render_util.normal_base_forward(normal)
        ctx.save_for_backward(normal)
        return normal_b

    @staticmethod
    def backward(ctx, grad_normal_b):
        (normal,) = ctx.saved_tensors
        (grad_normal,) = render_util.normal_base_backward(grad_normal_b, normal)
        return grad_normal


class Normal_Base(torch.nn.Module):
    def __init__(self):
        super(Normal_Base, self).__init__()

    def forward(self, normal):
        return Compute_normal_base.apply(normal)


def preprocess_render(geometry, euler, trans, cam, tris, vert_tris, ori_img):
    point_num = geometry.shape[1]
    rott_geo = geo_transform.euler_trans_geo(geometry, euler, trans)
    proj_geo = geo_transform.proj_geo(rott_geo, cam)
    rot_tri_normal = compute_tri_normal(rott_geo, tris)
    rot_vert_normal = torch.index_select(rot_tri_normal, 1, vert_tris)
    is_visible = -torch.bmm(
        rot_vert_normal.reshape(-1, 1, 3),
        nn.functional.normalize(rott_geo.reshape(-1, 3, 1)),
    ).reshape(-1, point_num)
    is_visible[is_visible < 0.01] = -1
    pixel_valid = torch.zeros(
        (ori_img.shape[0], ori_img.shape[1] * ori_img.shape[2]),
        dtype=torch.float32,
        device=ori_img.device,
    )
    return rott_geo, proj_geo, rot_tri_normal, is_visible, pixel_valid


class Render_Face(torch.autograd.Function):
    @staticmethod
    def forward(
        ctx, proj_geo, texture, nbl, ori_img, is_visible, tri_inds, pixel_valid
    ):
        batch_size, h, w, _ = ori_img.shape
        ori_img = ori_img.view(batch_size, -1, 3)
        ori_size = torch.cat(
            (
                torch.ones((batch_size, 1), dtype=torch.int32, device=ori_img.device)
                * h,
                torch.ones((batch_size, 1), dtype=torch.int32, device=ori_img.device)
                * w,
            ),
            dim=1,
        ).view(-1)
        tri_index, tri_coord, render, real = render_util.render_face_forward(
            proj_geo, ori_img, ori_size, texture, nbl, is_visible, tri_inds, pixel_valid
        )
        ctx.save_for_backward(
            ori_img, ori_size, proj_geo, texture, nbl, tri_inds, tri_index, tri_coord
        )
        return render, real

    @staticmethod
    def backward(ctx, grad_render, grad_real):
        (
            ori_img,
            ori_size,
            proj_geo,
            texture,
            nbl,
            tri_inds,
            tri_index,
            tri_coord,
        ) = ctx.saved_tensors
        grad_proj_geo, grad_texture, grad_nbl = render_util.render_face_backward(
            grad_render,
            grad_real,
            ori_img,
            ori_size,
            proj_geo,
            texture,
            nbl,
            tri_inds,
            tri_index,
            tri_coord,
        )
        return grad_proj_geo, grad_texture, grad_nbl, None, None, None, None


class Render_RGB(nn.Module):
    def __init__(self):
        super(Render_RGB, self).__init__()

    def forward(
        self, proj_geo, texture, nbl, ori_img, is_visible, tri_inds, pixel_valid
    ):
        return Render_Face.apply(
            proj_geo, texture, nbl, ori_img, is_visible, tri_inds, pixel_valid
        )


def cal_land(proj_geo, is_visible, lands_info, land_num):
    (land_index,) = render_util.update_contour(lands_info, is_visible, land_num)
    proj_land = torch.index_select(proj_geo.reshape(-1, 3), 0, land_index)[
        :, :2
    ].reshape(-1, land_num, 2)
    return proj_land


class Render_Land(nn.Module):
    def __init__(self):
        super(Render_Land, self).__init__()
        lands_info = np.loadtxt("../data/3DMM/lands_info.txt", dtype=np.int32)
        self.lands_info = torch.as_tensor(lands_info).cuda()
        tris = np.loadtxt("../data/3DMM/tris.txt", dtype=np.int64)
        self.tris = torch.as_tensor(tris).cuda() - 1
        vert_tris = np.loadtxt("../data/3DMM/vert_tris.txt", dtype=np.int64)
        self.vert_tris = torch.as_tensor(vert_tris).cuda()
        self.normal_baser = Normal_Base().cuda()
        self.renderer = Render_RGB().cuda()

    def render_mesh(self, geometry, euler, trans, cam, ori_img, light):
        batch_size, h, w, _ = ori_img.shape
        ori_img = ori_img.view(batch_size, -1, 3)
        ori_size = torch.cat(
            (
                torch.ones((batch_size, 1), dtype=torch.int32, device=ori_img.device)
                * h,
                torch.ones((batch_size, 1), dtype=torch.int32, device=ori_img.device)
                * w,
            ),
            dim=1,
        ).view(-1)
        rott_geo, proj_geo, rot_tri_normal, _, _ = preprocess_render(
            geometry, euler, trans, cam, self.tris, self.vert_tris, ori_img
        )
        tri_nb = self.normal_baser(rot_tri_normal.contiguous())
        nbl = torch.bmm(
            tri_nb, (light.reshape(-1, 9, 3))[:, :, 0].unsqueeze(-1).repeat(1, 1, 3)
        )
        texture = torch.ones_like(geometry) * 200
        (render,) = render_util.render_mesh(
            proj_geo, ori_img, ori_size, texture, nbl, self.tris
        )
        return render.view(batch_size, h, w, 3).byte()

    def cal_loss_rgb(self, geometry, euler, trans, cam, ori_img, light, texture, lands):
        rott_geo, proj_geo, rot_tri_normal, is_visible, pixel_valid = preprocess_render(
            geometry, euler, trans, cam, self.tris, self.vert_tris, ori_img
        )
        tri_nb = self.normal_baser(rot_tri_normal.contiguous())
        nbl = torch.bmm(tri_nb, light.reshape(-1, 9, 3))
        render, real = self.renderer(
            proj_geo, texture, nbl, ori_img, is_visible, self.tris, pixel_valid
        )
        proj_land = cal_land(proj_geo, is_visible, self.lands_info, lands.shape[1])
        col_minus = torch.norm((render - real).reshape(-1, 3), dim=1).reshape(
            ori_img.shape[0], -1
        )
        col_dis = torch.mean(col_minus * pixel_valid) / (
            torch.mean(pixel_valid) + 0.00001
        )
        land_dists = torch.norm((proj_land - lands).reshape(-1, 2), dim=1).reshape(
            ori_img.shape[0], -1
        )
        lan_dis = torch.mean(land_dists)
        return col_dis, lan_dis