File size: 15,925 Bytes
88bbcbf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
import os
import glob
import tqdm
import json
import argparse
import cv2
import numpy as np

def extract_audio(path, out_path, sample_rate=16000):
    
    print(f'[INFO] ===== extract audio from {path} to {out_path} =====')
    cmd = f'ffmpeg -i {path} -f wav -ar {sample_rate} {out_path}'
    os.system(cmd)
    print(f'[INFO] ===== extracted audio =====')


def extract_audio_features(path, mode='wav2vec'):

    print(f'[INFO] ===== extract audio labels for {path} =====')
    if mode == 'wav2vec':
        cmd = f'python nerf/asr.py --wav {path} --save_feats'
    else: # deepspeech
        cmd = f'python data_utils/deepspeech_features/extract_ds_features.py --input {path}'
    os.system(cmd)
    print(f'[INFO] ===== extracted audio labels =====')



def extract_images(path, out_path, fps=25):

    print(f'[INFO] ===== extract images from {path} to {out_path} =====')
    cmd = f'ffmpeg -i {path} -vf fps={fps} -qmin 1 -q:v 1 -start_number 0 {os.path.join(out_path, "%d.jpg")}'
    os.system(cmd)
    print(f'[INFO] ===== extracted images =====')


def extract_semantics(ori_imgs_dir, parsing_dir):

    print(f'[INFO] ===== extract semantics from {ori_imgs_dir} to {parsing_dir} =====')
    cmd = f'python data_utils/face_parsing/test.py --respath={parsing_dir} --imgpath={ori_imgs_dir}'
    os.system(cmd)
    print(f'[INFO] ===== extracted semantics =====')


def extract_landmarks(ori_imgs_dir):

    print(f'[INFO] ===== extract face landmarks from {ori_imgs_dir} =====')

    import face_alignment
    try:
        fa = face_alignment.FaceAlignment(face_alignment.LandmarksType._2D, flip_input=False)
    except:
        fa = face_alignment.FaceAlignment(face_alignment.LandmarksType.TWO_D, flip_input=False)
    image_paths = glob.glob(os.path.join(ori_imgs_dir, '*.jpg'))
    for image_path in tqdm.tqdm(image_paths):
        input = cv2.imread(image_path, cv2.IMREAD_UNCHANGED) # [H, W, 3]
        input = cv2.cvtColor(input, cv2.COLOR_BGR2RGB)
        preds = fa.get_landmarks(input)
        if len(preds) > 0:
            lands = preds[0].reshape(-1, 2)[:,:2]
            np.savetxt(image_path.replace('jpg', 'lms'), lands, '%f')
    del fa
    print(f'[INFO] ===== extracted face landmarks =====')


def extract_background(base_dir, ori_imgs_dir):
    
    print(f'[INFO] ===== extract background image from {ori_imgs_dir} =====')

    from sklearn.neighbors import NearestNeighbors

    image_paths = glob.glob(os.path.join(ori_imgs_dir, '*.jpg'))
    # only use 1/20 image_paths 
    image_paths = image_paths[::20]
    # read one image to get H/W
    tmp_image = cv2.imread(image_paths[0], cv2.IMREAD_UNCHANGED) # [H, W, 3]
    h, w = tmp_image.shape[:2]

    # nearest neighbors
    all_xys = np.mgrid[0:h, 0:w].reshape(2, -1).transpose()
    distss = []
    for image_path in tqdm.tqdm(image_paths):
        parse_img = cv2.imread(image_path.replace('ori_imgs', 'parsing').replace('.jpg', '.png'))
        bg = (parse_img[..., 0] == 255) & (parse_img[..., 1] == 255) & (parse_img[..., 2] == 255)
        fg_xys = np.stack(np.nonzero(~bg)).transpose(1, 0)
        nbrs = NearestNeighbors(n_neighbors=1, algorithm='kd_tree').fit(fg_xys)
        dists, _ = nbrs.kneighbors(all_xys)
        distss.append(dists)

    distss = np.stack(distss)
    max_dist = np.max(distss, 0)
    max_id = np.argmax(distss, 0)

    bc_pixs = max_dist > 5
    bc_pixs_id = np.nonzero(bc_pixs)
    bc_ids = max_id[bc_pixs]

    imgs = []
    num_pixs = distss.shape[1]
    for image_path in image_paths:
        img = cv2.imread(image_path)
        imgs.append(img)
    imgs = np.stack(imgs).reshape(-1, num_pixs, 3)

    bc_img = np.zeros((h*w, 3), dtype=np.uint8)
    bc_img[bc_pixs_id, :] = imgs[bc_ids, bc_pixs_id, :]
    bc_img = bc_img.reshape(h, w, 3)

    max_dist = max_dist.reshape(h, w)
    bc_pixs = max_dist > 5
    bg_xys = np.stack(np.nonzero(~bc_pixs)).transpose()
    fg_xys = np.stack(np.nonzero(bc_pixs)).transpose()
    nbrs = NearestNeighbors(n_neighbors=1, algorithm='kd_tree').fit(fg_xys)
    distances, indices = nbrs.kneighbors(bg_xys)
    bg_fg_xys = fg_xys[indices[:, 0]]
    bc_img[bg_xys[:, 0], bg_xys[:, 1], :] = bc_img[bg_fg_xys[:, 0], bg_fg_xys[:, 1], :]

    cv2.imwrite(os.path.join(base_dir, 'bc.jpg'), bc_img)

    print(f'[INFO] ===== extracted background image =====')


def extract_torso_and_gt(base_dir, ori_imgs_dir):

    print(f'[INFO] ===== extract torso and gt images for {base_dir} =====')

    from scipy.ndimage import binary_erosion, binary_dilation

    # load bg
    bg_image = cv2.imread(os.path.join(base_dir, 'bc.jpg'), cv2.IMREAD_UNCHANGED)
    
    image_paths = glob.glob(os.path.join(ori_imgs_dir, '*.jpg'))

    for image_path in tqdm.tqdm(image_paths):
        # read ori image
        ori_image = cv2.imread(image_path, cv2.IMREAD_UNCHANGED) # [H, W, 3]

        # read semantics
        seg = cv2.imread(image_path.replace('ori_imgs', 'parsing').replace('.jpg', '.png'))
        head_part = (seg[..., 0] == 255) & (seg[..., 1] == 0) & (seg[..., 2] == 0)
        neck_part = (seg[..., 0] == 0) & (seg[..., 1] == 255) & (seg[..., 2] == 0)
        torso_part = (seg[..., 0] == 0) & (seg[..., 1] == 0) & (seg[..., 2] == 255)
        bg_part = (seg[..., 0] == 255) & (seg[..., 1] == 255) & (seg[..., 2] == 255)

        # get gt image
        gt_image = ori_image.copy()
        gt_image[bg_part] = bg_image[bg_part]
        cv2.imwrite(image_path.replace('ori_imgs', 'gt_imgs'), gt_image)

        # get torso image
        torso_image = gt_image.copy() # rgb
        torso_image[head_part] = bg_image[head_part]
        torso_alpha = 255 * np.ones((gt_image.shape[0], gt_image.shape[1], 1), dtype=np.uint8) # alpha
        
        # torso part "vertical" in-painting...
        L = 8 + 1
        torso_coords = np.stack(np.nonzero(torso_part), axis=-1) # [M, 2]
        # lexsort: sort 2D coords first by y then by x, 
        # ref: https://stackoverflow.com/questions/2706605/sorting-a-2d-numpy-array-by-multiple-axes
        inds = np.lexsort((torso_coords[:, 0], torso_coords[:, 1]))
        torso_coords = torso_coords[inds]
        # choose the top pixel for each column
        u, uid, ucnt = np.unique(torso_coords[:, 1], return_index=True, return_counts=True)
        top_torso_coords = torso_coords[uid] # [m, 2]
        # only keep top-is-head pixels
        top_torso_coords_up = top_torso_coords.copy() - np.array([1, 0])
        mask = head_part[tuple(top_torso_coords_up.T)] 
        if mask.any():
            top_torso_coords = top_torso_coords[mask]
            # get the color
            top_torso_colors = gt_image[tuple(top_torso_coords.T)] # [m, 3]
            # construct inpaint coords (vertically up, or minus in x)
            inpaint_torso_coords = top_torso_coords[None].repeat(L, 0) # [L, m, 2]
            inpaint_offsets = np.stack([-np.arange(L), np.zeros(L, dtype=np.int32)], axis=-1)[:, None] # [L, 1, 2]
            inpaint_torso_coords += inpaint_offsets
            inpaint_torso_coords = inpaint_torso_coords.reshape(-1, 2) # [Lm, 2]
            inpaint_torso_colors = top_torso_colors[None].repeat(L, 0) # [L, m, 3]
            darken_scaler = 0.98 ** np.arange(L).reshape(L, 1, 1) # [L, 1, 1]
            inpaint_torso_colors = (inpaint_torso_colors * darken_scaler).reshape(-1, 3) # [Lm, 3]
            # set color
            torso_image[tuple(inpaint_torso_coords.T)] = inpaint_torso_colors

            inpaint_torso_mask = np.zeros_like(torso_image[..., 0]).astype(bool)
            inpaint_torso_mask[tuple(inpaint_torso_coords.T)] = True
        else:
            inpaint_torso_mask = None
            

        # neck part "vertical" in-painting...
        push_down = 4
        L = 48 + push_down + 1

        neck_part = binary_dilation(neck_part, structure=np.array([[0, 1, 0], [0, 1, 0], [0, 1, 0]], dtype=bool), iterations=3)

        neck_coords = np.stack(np.nonzero(neck_part), axis=-1) # [M, 2]
        # lexsort: sort 2D coords first by y then by x, 
        # ref: https://stackoverflow.com/questions/2706605/sorting-a-2d-numpy-array-by-multiple-axes
        inds = np.lexsort((neck_coords[:, 0], neck_coords[:, 1]))
        neck_coords = neck_coords[inds]
        # choose the top pixel for each column
        u, uid, ucnt = np.unique(neck_coords[:, 1], return_index=True, return_counts=True)
        top_neck_coords = neck_coords[uid] # [m, 2]
        # only keep top-is-head pixels
        top_neck_coords_up = top_neck_coords.copy() - np.array([1, 0])
        mask = head_part[tuple(top_neck_coords_up.T)] 
        
        top_neck_coords = top_neck_coords[mask]
        # push these top down for 4 pixels to make the neck inpainting more natural...
        offset_down = np.minimum(ucnt[mask] - 1, push_down)
        top_neck_coords += np.stack([offset_down, np.zeros_like(offset_down)], axis=-1)
        # get the color
        top_neck_colors = gt_image[tuple(top_neck_coords.T)] # [m, 3]
        # construct inpaint coords (vertically up, or minus in x)
        inpaint_neck_coords = top_neck_coords[None].repeat(L, 0) # [L, m, 2]
        inpaint_offsets = np.stack([-np.arange(L), np.zeros(L, dtype=np.int32)], axis=-1)[:, None] # [L, 1, 2]
        inpaint_neck_coords += inpaint_offsets
        inpaint_neck_coords = inpaint_neck_coords.reshape(-1, 2) # [Lm, 2]
        inpaint_neck_colors = top_neck_colors[None].repeat(L, 0) # [L, m, 3]
        darken_scaler = 0.98 ** np.arange(L).reshape(L, 1, 1) # [L, 1, 1]
        inpaint_neck_colors = (inpaint_neck_colors * darken_scaler).reshape(-1, 3) # [Lm, 3]
        # set color
        torso_image[tuple(inpaint_neck_coords.T)] = inpaint_neck_colors

        # apply blurring to the inpaint area to avoid vertical-line artifects...
        inpaint_mask = np.zeros_like(torso_image[..., 0]).astype(bool)
        inpaint_mask[tuple(inpaint_neck_coords.T)] = True

        blur_img = torso_image.copy()
        blur_img = cv2.GaussianBlur(blur_img, (5, 5), cv2.BORDER_DEFAULT)

        torso_image[inpaint_mask] = blur_img[inpaint_mask]

        # set mask
        mask = (neck_part | torso_part | inpaint_mask)
        if inpaint_torso_mask is not None:
            mask = mask | inpaint_torso_mask
        torso_image[~mask] = 0
        torso_alpha[~mask] = 0

        cv2.imwrite(image_path.replace('ori_imgs', 'torso_imgs').replace('.jpg', '.png'), np.concatenate([torso_image, torso_alpha], axis=-1))

    print(f'[INFO] ===== extracted torso and gt images =====')


def face_tracking(ori_imgs_dir):

    print(f'[INFO] ===== perform face tracking =====')

    image_paths = glob.glob(os.path.join(ori_imgs_dir, '*.jpg'))
    
    # read one image to get H/W
    tmp_image = cv2.imread(image_paths[0], cv2.IMREAD_UNCHANGED) # [H, W, 3]
    h, w = tmp_image.shape[:2]

    cmd = f'python data_utils/face_tracking/face_tracker.py --path={ori_imgs_dir} --img_h={h} --img_w={w} --frame_num={len(image_paths)}'

    os.system(cmd)

    print(f'[INFO] ===== finished face tracking =====')


def save_transforms(base_dir, ori_imgs_dir):
    print(f'[INFO] ===== save transforms =====')

    import torch

    image_paths = glob.glob(os.path.join(ori_imgs_dir, '*.jpg'))
    
    # read one image to get H/W
    tmp_image = cv2.imread(image_paths[0], cv2.IMREAD_UNCHANGED) # [H, W, 3]
    h, w = tmp_image.shape[:2]

    params_dict = torch.load(os.path.join(base_dir, 'track_params.pt'))
    focal_len = params_dict['focal']
    euler_angle = params_dict['euler']
    trans = params_dict['trans'] / 10.0
    valid_num = euler_angle.shape[0]

    def euler2rot(euler_angle):
        batch_size = euler_angle.shape[0]
        theta = euler_angle[:, 0].reshape(-1, 1, 1)
        phi = euler_angle[:, 1].reshape(-1, 1, 1)
        psi = euler_angle[:, 2].reshape(-1, 1, 1)
        one = torch.ones((batch_size, 1, 1), dtype=torch.float32, device=euler_angle.device)
        zero = torch.zeros((batch_size, 1, 1), dtype=torch.float32, device=euler_angle.device)
        rot_x = torch.cat((
            torch.cat((one, zero, zero), 1),
            torch.cat((zero, theta.cos(), theta.sin()), 1),
            torch.cat((zero, -theta.sin(), theta.cos()), 1),
        ), 2)
        rot_y = torch.cat((
            torch.cat((phi.cos(), zero, -phi.sin()), 1),
            torch.cat((zero, one, zero), 1),
            torch.cat((phi.sin(), zero, phi.cos()), 1),
        ), 2)
        rot_z = torch.cat((
            torch.cat((psi.cos(), -psi.sin(), zero), 1),
            torch.cat((psi.sin(), psi.cos(), zero), 1),
            torch.cat((zero, zero, one), 1)
        ), 2)
        return torch.bmm(rot_x, torch.bmm(rot_y, rot_z))


    # train_val_split = int(valid_num*0.5)
    # train_val_split = valid_num - 25 * 20 # take the last 20s as valid set.
    train_val_split = int(valid_num * 10 / 11)

    train_ids = torch.arange(0, train_val_split)
    val_ids = torch.arange(train_val_split, valid_num)

    rot = euler2rot(euler_angle)
    rot_inv = rot.permute(0, 2, 1)
    trans_inv = -torch.bmm(rot_inv, trans.unsqueeze(2))

    pose = torch.eye(4, dtype=torch.float32)
    save_ids = ['train', 'val']
    train_val_ids = [train_ids, val_ids]
    mean_z = -float(torch.mean(trans[:, 2]).item())

    for split in range(2):
        transform_dict = dict()
        transform_dict['focal_len'] = float(focal_len[0])
        transform_dict['cx'] = float(w/2.0)
        transform_dict['cy'] = float(h/2.0)
        transform_dict['frames'] = []
        ids = train_val_ids[split]
        save_id = save_ids[split]

        for i in ids:
            i = i.item()
            frame_dict = dict()
            frame_dict['img_id'] = i
            frame_dict['aud_id'] = i

            pose[:3, :3] = rot_inv[i]
            pose[:3, 3] = trans_inv[i, :, 0]

            frame_dict['transform_matrix'] = pose.numpy().tolist()

            transform_dict['frames'].append(frame_dict)

        with open(os.path.join(base_dir, 'transforms_' + save_id + '.json'), 'w') as fp:
            json.dump(transform_dict, fp, indent=2, separators=(',', ': '))

    print(f'[INFO] ===== finished saving transforms =====')


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('path', type=str, help="path to video file")
    parser.add_argument('--task', type=int, default=-1, help="-1 means all")
    parser.add_argument('--asr', type=str, default='deepspeech', help="wav2vec or deepspeech")

    opt = parser.parse_args()

    base_dir = os.path.dirname(opt.path)
    
    wav_path = os.path.join(base_dir, 'aud.wav')
    ori_imgs_dir = os.path.join(base_dir, 'ori_imgs')
    parsing_dir = os.path.join(base_dir, 'parsing')
    gt_imgs_dir = os.path.join(base_dir, 'gt_imgs')
    torso_imgs_dir = os.path.join(base_dir, 'torso_imgs')

    os.makedirs(ori_imgs_dir, exist_ok=True)
    os.makedirs(parsing_dir, exist_ok=True)
    os.makedirs(gt_imgs_dir, exist_ok=True)
    os.makedirs(torso_imgs_dir, exist_ok=True)


    # extract audio
    if opt.task == -1 or opt.task == 1:
        extract_audio(opt.path, wav_path)

    # extract audio features
    if opt.task == -1 or opt.task == 2:
        extract_audio_features(wav_path, mode=opt.asr)

    # extract images
    if opt.task == -1 or opt.task == 3:
        extract_images(opt.path, ori_imgs_dir)

    # face parsing
    if opt.task == -1 or opt.task == 4:
        extract_semantics(ori_imgs_dir, parsing_dir)

    # extract bg
    if opt.task == -1 or opt.task == 5:
        extract_background(base_dir, ori_imgs_dir)

    # extract torso images and gt_images
    if opt.task == -1 or opt.task == 6:
        extract_torso_and_gt(base_dir, ori_imgs_dir)

    # extract face landmarks
    if opt.task == -1 or opt.task == 7:
        extract_landmarks(ori_imgs_dir)

    # face tracking
    if opt.task == -1 or opt.task == 8:
        face_tracking(ori_imgs_dir)

    # save transforms.json
    if opt.task == -1 or opt.task == 9:
        save_transforms(base_dir, ori_imgs_dir)