|
import os |
|
import sys |
|
import cv2 |
|
import argparse |
|
from pathlib import Path |
|
import torch |
|
import numpy as np |
|
from data_loader import load_dir |
|
from facemodel import Face_3DMM |
|
from util import * |
|
from render_3dmm import Render_3DMM |
|
|
|
|
|
|
|
|
|
dir_path = os.path.dirname(os.path.realpath(__file__)) |
|
|
|
|
|
def set_requires_grad(tensor_list): |
|
for tensor in tensor_list: |
|
tensor.requires_grad = True |
|
|
|
|
|
parser = argparse.ArgumentParser() |
|
parser.add_argument( |
|
"--path", type=str, default="obama/ori_imgs", help="idname of target person" |
|
) |
|
parser.add_argument("--img_h", type=int, default=512, help="image height") |
|
parser.add_argument("--img_w", type=int, default=512, help="image width") |
|
parser.add_argument("--frame_num", type=int, default=11000, help="image number") |
|
args = parser.parse_args() |
|
|
|
start_id = 0 |
|
end_id = args.frame_num |
|
|
|
lms, img_paths = load_dir(args.path, start_id, end_id) |
|
num_frames = lms.shape[0] |
|
h, w = args.img_h, args.img_w |
|
cxy = torch.tensor((w / 2.0, h / 2.0), dtype=torch.float).cuda() |
|
id_dim, exp_dim, tex_dim, point_num = 100, 79, 100, 34650 |
|
model_3dmm = Face_3DMM( |
|
os.path.join(dir_path, "3DMM"), id_dim, exp_dim, tex_dim, point_num |
|
) |
|
|
|
|
|
sel_ids = np.arange(0, num_frames, 40) |
|
sel_num = sel_ids.shape[0] |
|
arg_focal = 1600 |
|
arg_landis = 1e5 |
|
|
|
print(f'[INFO] fitting focal length...') |
|
|
|
|
|
for focal in range(600, 1500, 100): |
|
id_para = lms.new_zeros((1, id_dim), requires_grad=True) |
|
exp_para = lms.new_zeros((sel_num, exp_dim), requires_grad=True) |
|
euler_angle = lms.new_zeros((sel_num, 3), requires_grad=True) |
|
trans = lms.new_zeros((sel_num, 3), requires_grad=True) |
|
trans.data[:, 2] -= 7 |
|
focal_length = lms.new_zeros(1, requires_grad=False) |
|
focal_length.data += focal |
|
set_requires_grad([id_para, exp_para, euler_angle, trans]) |
|
|
|
optimizer_idexp = torch.optim.Adam([id_para, exp_para], lr=0.1) |
|
optimizer_frame = torch.optim.Adam([euler_angle, trans], lr=0.1) |
|
|
|
for iter in range(2000): |
|
id_para_batch = id_para.expand(sel_num, -1) |
|
geometry = model_3dmm.get_3dlandmarks( |
|
id_para_batch, exp_para, euler_angle, trans, focal_length, cxy |
|
) |
|
proj_geo = forward_transform(geometry, euler_angle, trans, focal_length, cxy) |
|
loss_lan = cal_lan_loss(proj_geo[:, :, :2], lms[sel_ids].detach()) |
|
loss = loss_lan |
|
optimizer_frame.zero_grad() |
|
loss.backward() |
|
optimizer_frame.step() |
|
|
|
|
|
|
|
for iter in range(2500): |
|
id_para_batch = id_para.expand(sel_num, -1) |
|
geometry = model_3dmm.get_3dlandmarks( |
|
id_para_batch, exp_para, euler_angle, trans, focal_length, cxy |
|
) |
|
proj_geo = forward_transform(geometry, euler_angle, trans, focal_length, cxy) |
|
loss_lan = cal_lan_loss(proj_geo[:, :, :2], lms[sel_ids].detach()) |
|
loss_regid = torch.mean(id_para * id_para) |
|
loss_regexp = torch.mean(exp_para * exp_para) |
|
loss = loss_lan + loss_regid * 0.5 + loss_regexp * 0.4 |
|
optimizer_idexp.zero_grad() |
|
optimizer_frame.zero_grad() |
|
loss.backward() |
|
optimizer_idexp.step() |
|
optimizer_frame.step() |
|
|
|
|
|
|
|
if iter % 1500 == 0 and iter >= 1500: |
|
for param_group in optimizer_idexp.param_groups: |
|
param_group["lr"] *= 0.2 |
|
for param_group in optimizer_frame.param_groups: |
|
param_group["lr"] *= 0.2 |
|
|
|
print(focal, loss_lan.item(), torch.mean(trans[:, 2]).item()) |
|
|
|
if loss_lan.item() < arg_landis: |
|
arg_landis = loss_lan.item() |
|
arg_focal = focal |
|
|
|
print("[INFO] find best focal:", arg_focal) |
|
|
|
print(f'[INFO] coarse fitting...') |
|
|
|
|
|
id_para = lms.new_zeros((1, id_dim), requires_grad=True) |
|
exp_para = lms.new_zeros((num_frames, exp_dim), requires_grad=True) |
|
tex_para = lms.new_zeros( |
|
(1, tex_dim), requires_grad=True |
|
) |
|
euler_angle = lms.new_zeros((num_frames, 3), requires_grad=True) |
|
trans = lms.new_zeros((num_frames, 3), requires_grad=True) |
|
light_para = lms.new_zeros((num_frames, 27), requires_grad=True) |
|
trans.data[:, 2] -= 7 |
|
focal_length = lms.new_zeros(1, requires_grad=True) |
|
focal_length.data += arg_focal |
|
|
|
set_requires_grad([id_para, exp_para, tex_para, euler_angle, trans, light_para]) |
|
|
|
optimizer_idexp = torch.optim.Adam([id_para, exp_para], lr=0.1) |
|
optimizer_frame = torch.optim.Adam([euler_angle, trans], lr=1) |
|
|
|
for iter in range(1500): |
|
id_para_batch = id_para.expand(num_frames, -1) |
|
geometry = model_3dmm.get_3dlandmarks( |
|
id_para_batch, exp_para, euler_angle, trans, focal_length, cxy |
|
) |
|
proj_geo = forward_transform(geometry, euler_angle, trans, focal_length, cxy) |
|
loss_lan = cal_lan_loss(proj_geo[:, :, :2], lms.detach()) |
|
loss = loss_lan |
|
optimizer_frame.zero_grad() |
|
loss.backward() |
|
optimizer_frame.step() |
|
if iter == 1000: |
|
for param_group in optimizer_frame.param_groups: |
|
param_group["lr"] = 0.1 |
|
|
|
|
|
|
|
for param_group in optimizer_frame.param_groups: |
|
param_group["lr"] = 0.1 |
|
|
|
for iter in range(2000): |
|
id_para_batch = id_para.expand(num_frames, -1) |
|
geometry = model_3dmm.get_3dlandmarks( |
|
id_para_batch, exp_para, euler_angle, trans, focal_length, cxy |
|
) |
|
proj_geo = forward_transform(geometry, euler_angle, trans, focal_length, cxy) |
|
loss_lan = cal_lan_loss(proj_geo[:, :, :2], lms.detach()) |
|
loss_regid = torch.mean(id_para * id_para) |
|
loss_regexp = torch.mean(exp_para * exp_para) |
|
loss = loss_lan + loss_regid * 0.5 + loss_regexp * 0.4 |
|
optimizer_idexp.zero_grad() |
|
optimizer_frame.zero_grad() |
|
loss.backward() |
|
optimizer_idexp.step() |
|
optimizer_frame.step() |
|
|
|
|
|
if iter % 1000 == 0 and iter >= 1000: |
|
for param_group in optimizer_idexp.param_groups: |
|
param_group["lr"] *= 0.2 |
|
for param_group in optimizer_frame.param_groups: |
|
param_group["lr"] *= 0.2 |
|
|
|
print(loss_lan.item(), torch.mean(trans[:, 2]).item()) |
|
|
|
print(f'[INFO] fitting light...') |
|
|
|
batch_size = 32 |
|
|
|
device_default = torch.device("cuda:0") |
|
device_render = torch.device("cuda:0") |
|
renderer = Render_3DMM(arg_focal, h, w, batch_size, device_render) |
|
|
|
sel_ids = np.arange(0, num_frames, int(num_frames / batch_size))[:batch_size] |
|
imgs = [] |
|
for sel_id in sel_ids: |
|
imgs.append(cv2.imread(img_paths[sel_id])[:, :, ::-1]) |
|
imgs = np.stack(imgs) |
|
sel_imgs = torch.as_tensor(imgs).cuda() |
|
sel_lms = lms[sel_ids] |
|
sel_light = light_para.new_zeros((batch_size, 27), requires_grad=True) |
|
set_requires_grad([sel_light]) |
|
|
|
optimizer_tl = torch.optim.Adam([tex_para, sel_light], lr=0.1) |
|
optimizer_id_frame = torch.optim.Adam([euler_angle, trans, exp_para, id_para], lr=0.01) |
|
|
|
for iter in range(71): |
|
sel_exp_para, sel_euler, sel_trans = ( |
|
exp_para[sel_ids], |
|
euler_angle[sel_ids], |
|
trans[sel_ids], |
|
) |
|
sel_id_para = id_para.expand(batch_size, -1) |
|
geometry = model_3dmm.get_3dlandmarks( |
|
sel_id_para, sel_exp_para, sel_euler, sel_trans, focal_length, cxy |
|
) |
|
proj_geo = forward_transform(geometry, sel_euler, sel_trans, focal_length, cxy) |
|
|
|
loss_lan = cal_lan_loss(proj_geo[:, :, :2], sel_lms.detach()) |
|
loss_regid = torch.mean(id_para * id_para) |
|
loss_regexp = torch.mean(sel_exp_para * sel_exp_para) |
|
|
|
sel_tex_para = tex_para.expand(batch_size, -1) |
|
sel_texture = model_3dmm.forward_tex(sel_tex_para) |
|
geometry = model_3dmm.forward_geo(sel_id_para, sel_exp_para) |
|
rott_geo = forward_rott(geometry, sel_euler, sel_trans) |
|
render_imgs = renderer( |
|
rott_geo.to(device_render), |
|
sel_texture.to(device_render), |
|
sel_light.to(device_render), |
|
) |
|
render_imgs = render_imgs.to(device_default) |
|
|
|
mask = (render_imgs[:, :, :, 3]).detach() > 0.0 |
|
render_proj = sel_imgs.clone() |
|
render_proj[mask] = render_imgs[mask][..., :3].byte() |
|
loss_col = cal_col_loss(render_imgs[:, :, :, :3], sel_imgs.float(), mask) |
|
|
|
if iter > 50: |
|
loss = loss_col + loss_lan * 0.05 + loss_regid * 1.0 + loss_regexp * 0.8 |
|
else: |
|
loss = loss_col + loss_lan * 3 + loss_regid * 2.0 + loss_regexp * 1.0 |
|
|
|
optimizer_tl.zero_grad() |
|
optimizer_id_frame.zero_grad() |
|
loss.backward() |
|
|
|
optimizer_tl.step() |
|
optimizer_id_frame.step() |
|
|
|
if iter % 50 == 0 and iter > 0: |
|
for param_group in optimizer_id_frame.param_groups: |
|
param_group["lr"] *= 0.2 |
|
for param_group in optimizer_tl.param_groups: |
|
param_group["lr"] *= 0.2 |
|
|
|
|
|
|
|
light_mean = torch.mean(sel_light, 0).unsqueeze(0).repeat(num_frames, 1) |
|
light_para.data = light_mean |
|
|
|
exp_para = exp_para.detach() |
|
euler_angle = euler_angle.detach() |
|
trans = trans.detach() |
|
light_para = light_para.detach() |
|
|
|
print(f'[INFO] fine frame-wise fitting...') |
|
|
|
for i in range(int((num_frames - 1) / batch_size + 1)): |
|
|
|
if (i + 1) * batch_size > num_frames: |
|
start_n = num_frames - batch_size |
|
sel_ids = np.arange(num_frames - batch_size, num_frames) |
|
else: |
|
start_n = i * batch_size |
|
sel_ids = np.arange(i * batch_size, i * batch_size + batch_size) |
|
|
|
imgs = [] |
|
for sel_id in sel_ids: |
|
imgs.append(cv2.imread(img_paths[sel_id])[:, :, ::-1]) |
|
imgs = np.stack(imgs) |
|
sel_imgs = torch.as_tensor(imgs).cuda() |
|
sel_lms = lms[sel_ids] |
|
|
|
sel_exp_para = exp_para.new_zeros((batch_size, exp_dim), requires_grad=True) |
|
sel_exp_para.data = exp_para[sel_ids].clone() |
|
sel_euler = euler_angle.new_zeros((batch_size, 3), requires_grad=True) |
|
sel_euler.data = euler_angle[sel_ids].clone() |
|
sel_trans = trans.new_zeros((batch_size, 3), requires_grad=True) |
|
sel_trans.data = trans[sel_ids].clone() |
|
sel_light = light_para.new_zeros((batch_size, 27), requires_grad=True) |
|
sel_light.data = light_para[sel_ids].clone() |
|
|
|
set_requires_grad([sel_exp_para, sel_euler, sel_trans, sel_light]) |
|
|
|
optimizer_cur_batch = torch.optim.Adam( |
|
[sel_exp_para, sel_euler, sel_trans, sel_light], lr=0.005 |
|
) |
|
|
|
sel_id_para = id_para.expand(batch_size, -1).detach() |
|
sel_tex_para = tex_para.expand(batch_size, -1).detach() |
|
|
|
pre_num = 5 |
|
|
|
if i > 0: |
|
pre_ids = np.arange(start_n - pre_num, start_n) |
|
|
|
for iter in range(50): |
|
|
|
geometry = model_3dmm.get_3dlandmarks( |
|
sel_id_para, sel_exp_para, sel_euler, sel_trans, focal_length, cxy |
|
) |
|
proj_geo = forward_transform(geometry, sel_euler, sel_trans, focal_length, cxy) |
|
loss_lan = cal_lan_loss(proj_geo[:, :, :2], sel_lms.detach()) |
|
loss_regexp = torch.mean(sel_exp_para * sel_exp_para) |
|
|
|
sel_geometry = model_3dmm.forward_geo(sel_id_para, sel_exp_para) |
|
sel_texture = model_3dmm.forward_tex(sel_tex_para) |
|
geometry = model_3dmm.forward_geo(sel_id_para, sel_exp_para) |
|
rott_geo = forward_rott(geometry, sel_euler, sel_trans) |
|
render_imgs = renderer( |
|
rott_geo.to(device_render), |
|
sel_texture.to(device_render), |
|
sel_light.to(device_render), |
|
) |
|
render_imgs = render_imgs.to(device_default) |
|
|
|
mask = (render_imgs[:, :, :, 3]).detach() > 0.0 |
|
|
|
loss_col = cal_col_loss(render_imgs[:, :, :, :3], sel_imgs.float(), mask) |
|
|
|
if i > 0: |
|
geometry_lap = model_3dmm.forward_geo_sub( |
|
id_para.expand(batch_size + pre_num, -1).detach(), |
|
torch.cat((exp_para[pre_ids].detach(), sel_exp_para)), |
|
model_3dmm.rigid_ids, |
|
) |
|
rott_geo_lap = forward_rott( |
|
geometry_lap, |
|
torch.cat((euler_angle[pre_ids].detach(), sel_euler)), |
|
torch.cat((trans[pre_ids].detach(), sel_trans)), |
|
) |
|
loss_lap = cal_lap_loss( |
|
[rott_geo_lap.reshape(rott_geo_lap.shape[0], -1).permute(1, 0)], [1.0] |
|
) |
|
else: |
|
geometry_lap = model_3dmm.forward_geo_sub( |
|
id_para.expand(batch_size, -1).detach(), |
|
sel_exp_para, |
|
model_3dmm.rigid_ids, |
|
) |
|
rott_geo_lap = forward_rott(geometry_lap, sel_euler, sel_trans) |
|
loss_lap = cal_lap_loss( |
|
[rott_geo_lap.reshape(rott_geo_lap.shape[0], -1).permute(1, 0)], [1.0] |
|
) |
|
|
|
|
|
if iter > 30: |
|
loss = loss_col * 0.5 + loss_lan * 1.5 + loss_lap * 100000 + loss_regexp * 1.0 |
|
else: |
|
loss = loss_col * 0.5 + loss_lan * 8 + loss_lap * 100000 + loss_regexp * 1.0 |
|
|
|
optimizer_cur_batch.zero_grad() |
|
loss.backward() |
|
optimizer_cur_batch.step() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
print(str(i) + " of " + str(int((num_frames - 1) / batch_size + 1)) + " done") |
|
|
|
render_proj = sel_imgs.clone() |
|
render_proj[mask] = render_imgs[mask][..., :3].byte() |
|
|
|
exp_para[sel_ids] = sel_exp_para.clone() |
|
euler_angle[sel_ids] = sel_euler.clone() |
|
trans[sel_ids] = sel_trans.clone() |
|
light_para[sel_ids] = sel_light.clone() |
|
|
|
torch.save( |
|
{ |
|
"id": id_para.detach().cpu(), |
|
"exp": exp_para.detach().cpu(), |
|
"euler": euler_angle.detach().cpu(), |
|
"trans": trans.detach().cpu(), |
|
"focal": focal_length.detach().cpu(), |
|
}, |
|
os.path.join(os.path.dirname(args.path), "track_params.pt"), |
|
) |
|
|
|
print("params saved") |
|
|