FredWe's picture
Upload 36 files
88bbcbf
from transformers import Wav2Vec2Processor, HubertModel
import soundfile as sf
import numpy as np
import torch
print("Loading the Wav2Vec2 Processor...")
wav2vec2_processor = Wav2Vec2Processor.from_pretrained("facebook/hubert-large-ls960-ft")
print("Loading the HuBERT Model...")
hubert_model = HubertModel.from_pretrained("facebook/hubert-large-ls960-ft")
def get_hubert_from_16k_wav(wav_16k_name):
speech_16k, _ = sf.read(wav_16k_name)
hubert = get_hubert_from_16k_speech(speech_16k)
return hubert
@torch.no_grad()
def get_hubert_from_16k_speech(speech, device="cuda:0"):
global hubert_model
hubert_model = hubert_model.to(device)
if speech.ndim ==2:
speech = speech[:, 0] # [T, 2] ==> [T,]
input_values_all = wav2vec2_processor(speech, return_tensors="pt", sampling_rate=16000).input_values # [1, T]
input_values_all = input_values_all.to(device)
# For long audio sequence, due to the memory limitation, we cannot process them in one run
# HuBERT process the wav with a CNN of stride [5,2,2,2,2,2], making a stride of 320
# Besides, the kernel is [10,3,3,3,3,2,2], making 400 a fundamental unit to get 1 time step.
# So the CNN is euqal to a big Conv1D with kernel k=400 and stride s=320
# We have the equation to calculate out time step: T = floor((t-k)/s)
# To prevent overlap, we set each clip length of (K+S*(N-1)), where N is the expected length T of this clip
# The start point of next clip should roll back with a length of (kernel-stride) so it is stride * N
kernel = 400
stride = 320
clip_length = stride * 1000
num_iter = input_values_all.shape[1] // clip_length
expected_T = (input_values_all.shape[1] - (kernel-stride)) // stride
res_lst = []
for i in range(num_iter):
if i == 0:
start_idx = 0
end_idx = clip_length - stride + kernel
else:
start_idx = clip_length * i
end_idx = start_idx + (clip_length - stride + kernel)
input_values = input_values_all[:, start_idx: end_idx]
hidden_states = hubert_model.forward(input_values).last_hidden_state # [B=1, T=pts//320, hid=1024]
res_lst.append(hidden_states[0])
if num_iter > 0:
input_values = input_values_all[:, clip_length * num_iter:]
else:
input_values = input_values_all
# if input_values.shape[1] != 0:
if input_values.shape[1] >= kernel: # if the last batch is shorter than kernel_size, skip it
hidden_states = hubert_model(input_values).last_hidden_state # [B=1, T=pts//320, hid=1024]
res_lst.append(hidden_states[0])
ret = torch.cat(res_lst, dim=0).cpu() # [T, 1024]
# assert ret.shape[0] == expected_T
assert abs(ret.shape[0] - expected_T) <= 1
if ret.shape[0] < expected_T:
ret = torch.nn.functional.pad(ret, (0,0,0,expected_T-ret.shape[0]))
else:
ret = ret[:expected_T]
return ret
def make_even_first_dim(tensor):
size = list(tensor.size())
if size[0] % 2 == 1:
size[0] -= 1
return tensor[:size[0]]
return tensor
import soundfile as sf
import numpy as np
import torch
from argparse import ArgumentParser
import librosa
parser = ArgumentParser()
parser.add_argument('--wav', type=str, help='')
args = parser.parse_args()
wav_name = args.wav
speech, sr = sf.read(wav_name)
speech_16k = librosa.resample(speech, orig_sr=sr, target_sr=16000)
print("SR: {} to {}".format(sr, 16000))
# print(speech.shape, speech_16k.shape)
hubert_hidden = get_hubert_from_16k_speech(speech_16k)
hubert_hidden = make_even_first_dim(hubert_hidden).reshape(-1, 2, 1024)
np.save(wav_name.replace('.wav', '_hu.npy'), hubert_hidden.detach().numpy())
print(hubert_hidden.detach().numpy().shape)