class HParams: | |
def __init__(self, **kwargs): | |
self.data = {} | |
for key, value in kwargs.items(): | |
self.data[key] = value | |
def __getattr__(self, key): | |
if key not in self.data: | |
raise AttributeError("'HParams' object has no attribute %s" % key) | |
return self.data[key] | |
def set_hparam(self, key, value): | |
self.data[key] = value | |
# Default hyperparameters | |
hparams = HParams( | |
num_mels=80, # Number of mel-spectrogram channels and local conditioning dimensionality | |
# network | |
rescale=True, # Whether to rescale audio prior to preprocessing | |
rescaling_max=0.9, # Rescaling value | |
# Use LWS (https://github.com/Jonathan-LeRoux/lws) for STFT and phase reconstruction | |
# It"s preferred to set True to use with https://github.com/r9y9/wavenet_vocoder | |
# Does not work if n_ffit is not multiple of hop_size!! | |
use_lws=False, | |
n_fft=800, # Extra window size is filled with 0 paddings to match this parameter | |
hop_size=200, # For 16000Hz, 200 = 12.5 ms (0.0125 * sample_rate) | |
win_size=800, # For 16000Hz, 800 = 50 ms (If None, win_size = n_fft) (0.05 * sample_rate) | |
sample_rate=16000, # 16000Hz (corresponding to librispeech) (sox --i <filename>) | |
frame_shift_ms=None, # Can replace hop_size parameter. (Recommended: 12.5) | |
# Mel and Linear spectrograms normalization/scaling and clipping | |
signal_normalization=True, | |
# Whether to normalize mel spectrograms to some predefined range (following below parameters) | |
allow_clipping_in_normalization=True, # Only relevant if mel_normalization = True | |
symmetric_mels=True, | |
# Whether to scale the data to be symmetric around 0. (Also multiplies the output range by 2, | |
# faster and cleaner convergence) | |
max_abs_value=4., | |
# max absolute value of data. If symmetric, data will be [-max, max] else [0, max] (Must not | |
# be too big to avoid gradient explosion, | |
# not too small for fast convergence) | |
# Contribution by @begeekmyfriend | |
# Spectrogram Pre-Emphasis (Lfilter: Reduce spectrogram noise and helps model certitude | |
# levels. Also allows for better G&L phase reconstruction) | |
preemphasize=True, # whether to apply filter | |
preemphasis=0.97, # filter coefficient. | |
# Limits | |
min_level_db=-100, | |
ref_level_db=20, | |
fmin=65, | |
# Set this to 55 if your speaker is male! if female, 95 should help taking off noise. (To | |
# test depending on dataset. Pitch info: male~[65, 260], female~[100, 525]) | |
fmax=6000, # To be increased/reduced depending on data. | |
###################### Our training parameters ################################# | |
img_size=96, | |
fps=25, | |
batch_size=16, | |
initial_learning_rate=1e-4, | |
nepochs=200000000000000000, ### ctrl + c, stop whenever eval loss is consistently greater than train loss for ~10 epochs | |
num_workers=16, | |
checkpoint_interval=3000, | |
eval_interval=3000, | |
save_optimizer_state=True, | |
syncnet_wt=0.0, # is initially zero, will be set automatically to 0.03 later. Leads to faster convergence. | |
syncnet_batch_size=64, | |
syncnet_lr=1e-4, | |
syncnet_eval_interval=10000, | |
syncnet_checkpoint_interval=10000, | |
disc_wt=0.07, | |
disc_initial_learning_rate=1e-4, | |
) | |