import time import numpy as np import torch import torch.nn.functional as F from transformers import AutoModelForCTC, AutoProcessor import pyaudio import soundfile as sf import resampy from queue import Queue from threading import Thread, Event def _read_frame(stream, exit_event, queue, chunk): while True: if exit_event.is_set(): print(f'[INFO] read frame thread ends') break frame = stream.read(chunk, exception_on_overflow=False) frame = np.frombuffer(frame, dtype=np.int16).astype(np.float32) / 32767 # [chunk] queue.put(frame) def _play_frame(stream, exit_event, queue, chunk): while True: if exit_event.is_set(): print(f'[INFO] play frame thread ends') break frame = queue.get() frame = (frame * 32767).astype(np.int16).tobytes() stream.write(frame, chunk) class ASR: def __init__(self, opt): self.opt = opt self.play = opt.asr_play self.device = 'cuda' if torch.cuda.is_available() else 'cpu' self.fps = opt.fps # 20 ms per frame self.sample_rate = 16000 self.chunk = self.sample_rate // self.fps # 320 samples per chunk (20ms * 16000 / 1000) self.mode = 'live' if opt.asr_wav == '' else 'file' if 'esperanto' in self.opt.asr_model: self.audio_dim = 44 elif 'deepspeech' in self.opt.asr_model: self.audio_dim = 29 else: self.audio_dim = 32 # prepare context cache # each segment is (stride_left + ctx + stride_right) * 20ms, latency should be (ctx + stride_right) * 20ms self.context_size = opt.m self.stride_left_size = opt.l self.stride_right_size = opt.r self.text = '[START]\n' self.terminated = False self.frames = [] # pad left frames if self.stride_left_size > 0: self.frames.extend([np.zeros(self.chunk, dtype=np.float32)] * self.stride_left_size) self.exit_event = Event() self.audio_instance = pyaudio.PyAudio() # create input stream if self.mode == 'file': self.file_stream = self.create_file_stream() else: # start a background process to read frames self.input_stream = self.audio_instance.open(format=pyaudio.paInt16, channels=1, rate=self.sample_rate, input=True, output=False, frames_per_buffer=self.chunk) self.queue = Queue() self.process_read_frame = Thread(target=_read_frame, args=(self.input_stream, self.exit_event, self.queue, self.chunk)) # play out the audio too...? if self.play: self.output_stream = self.audio_instance.open(format=pyaudio.paInt16, channels=1, rate=self.sample_rate, input=False, output=True, frames_per_buffer=self.chunk) self.output_queue = Queue() self.process_play_frame = Thread(target=_play_frame, args=(self.output_stream, self.exit_event, self.output_queue, self.chunk)) # current location of audio self.idx = 0 # create wav2vec model print(f'[INFO] loading ASR model {self.opt.asr_model}...') self.processor = AutoProcessor.from_pretrained(opt.asr_model) self.model = AutoModelForCTC.from_pretrained(opt.asr_model).to(self.device) # prepare to save logits if self.opt.asr_save_feats: self.all_feats = [] # the extracted features # use a loop queue to efficiently record endless features: [f--t---][-------][-------] self.feat_buffer_size = 4 self.feat_buffer_idx = 0 self.feat_queue = torch.zeros(self.feat_buffer_size * self.context_size, self.audio_dim, dtype=torch.float32, device=self.device) # TODO: hard coded 16 and 8 window size... self.front = self.feat_buffer_size * self.context_size - 8 # fake padding self.tail = 8 # attention window... self.att_feats = [torch.zeros(self.audio_dim, 16, dtype=torch.float32, device=self.device)] * 4 # 4 zero padding... # warm up steps needed: mid + right + window_size + attention_size self.warm_up_steps = self.context_size + self.stride_right_size + 8 + 2 * 3 self.listening = False self.playing = False def listen(self): # start if self.mode == 'live' and not self.listening: print(f'[INFO] starting read frame thread...') self.process_read_frame.start() self.listening = True if self.play and not self.playing: print(f'[INFO] starting play frame thread...') self.process_play_frame.start() self.playing = True def stop(self): self.exit_event.set() if self.play: self.output_stream.stop_stream() self.output_stream.close() if self.playing: self.process_play_frame.join() self.playing = False if self.mode == 'live': self.input_stream.stop_stream() self.input_stream.close() if self.listening: self.process_read_frame.join() self.listening = False def __enter__(self): return self def __exit__(self, exc_type, exc_value, traceback): self.stop() if self.mode == 'live': # live mode: also print the result text. self.text += '\n[END]' print(self.text) def get_next_feat(self): # return a [1/8, 16] window, for the next input to nerf side. while len(self.att_feats) < 8: # [------f+++t-----] if self.front < self.tail: feat = self.feat_queue[self.front:self.tail] # [++t-----------f+] else: feat = torch.cat([self.feat_queue[self.front:], self.feat_queue[:self.tail]], dim=0) self.front = (self.front + 2) % self.feat_queue.shape[0] self.tail = (self.tail + 2) % self.feat_queue.shape[0] # print(self.front, self.tail, feat.shape) self.att_feats.append(feat.permute(1, 0)) att_feat = torch.stack(self.att_feats, dim=0) # [8, 44, 16] # discard old self.att_feats = self.att_feats[1:] return att_feat def run_step(self): if self.terminated: return # get a frame of audio frame = self.get_audio_frame() # the last frame if frame is None: # terminate, but always run the network for the left frames self.terminated = True else: self.frames.append(frame) # put to output if self.play: self.output_queue.put(frame) # context not enough, do not run network. if len(self.frames) < self.stride_left_size + self.context_size + self.stride_right_size: return inputs = np.concatenate(self.frames) # [N * chunk] # discard the old part to save memory if not self.terminated: self.frames = self.frames[-(self.stride_left_size + self.stride_right_size):] logits, labels, text = self.frame_to_text(inputs) feats = logits # better lips-sync than labels # save feats if self.opt.asr_save_feats: self.all_feats.append(feats) # record the feats efficiently.. (no concat, constant memory) if not self.terminated: start = self.feat_buffer_idx * self.context_size end = start + feats.shape[0] self.feat_queue[start:end] = feats self.feat_buffer_idx = (self.feat_buffer_idx + 1) % self.feat_buffer_size # very naive, just concat the text output. if text != '': self.text = self.text + ' ' + text # will only run once at ternimation if self.terminated: self.text += '\n[END]' print(self.text) if self.opt.asr_save_feats: print(f'[INFO] save all feats for training purpose... ') feats = torch.cat(self.all_feats, dim=0) # [N, C] # print('[INFO] before unfold', feats.shape) window_size = 16 padding = window_size // 2 feats = feats.view(-1, self.audio_dim).permute(1, 0).contiguous() # [C, M] feats = feats.view(1, self.audio_dim, -1, 1) # [1, C, M, 1] unfold_feats = F.unfold(feats, kernel_size=(window_size, 1), padding=(padding, 0), stride=(2, 1)) # [1, C * window_size, M / 2 + 1] unfold_feats = unfold_feats.view(self.audio_dim, window_size, -1).permute(2, 1, 0).contiguous() # [C, window_size, M / 2 + 1] --> [M / 2 + 1, window_size, C] # print('[INFO] after unfold', unfold_feats.shape) # save to a npy file if 'esperanto' in self.opt.asr_model: output_path = self.opt.asr_wav.replace('.wav', '_eo.npy') else: output_path = self.opt.asr_wav.replace('.wav', '.npy') np.save(output_path, unfold_feats.cpu().numpy()) print(f"[INFO] saved logits to {output_path}") def create_file_stream(self): stream, sample_rate = sf.read(self.opt.asr_wav) # [T*sample_rate,] float64 stream = stream.astype(np.float32) if stream.ndim > 1: print(f'[WARN] audio has {stream.shape[1]} channels, only use the first.') stream = stream[:, 0] if sample_rate != self.sample_rate: print(f'[WARN] audio sample rate is {sample_rate}, resampling into {self.sample_rate}.') stream = resampy.resample(x=stream, sr_orig=sample_rate, sr_new=self.sample_rate) print(f'[INFO] loaded audio stream {self.opt.asr_wav}: {stream.shape}') return stream def create_pyaudio_stream(self): import pyaudio print(f'[INFO] creating live audio stream ...') audio = pyaudio.PyAudio() # get devices info = audio.get_host_api_info_by_index(0) n_devices = info.get('deviceCount') for i in range(0, n_devices): if (audio.get_device_info_by_host_api_device_index(0, i).get('maxInputChannels')) > 0: name = audio.get_device_info_by_host_api_device_index(0, i).get('name') print(f'[INFO] choose audio device {name}, id {i}') break # get stream stream = audio.open(input_device_index=i, format=pyaudio.paInt16, channels=1, rate=self.sample_rate, input=True, frames_per_buffer=self.chunk) return audio, stream def get_audio_frame(self): if self.mode == 'file': if self.idx < self.file_stream.shape[0]: frame = self.file_stream[self.idx: self.idx + self.chunk] self.idx = self.idx + self.chunk return frame else: return None else: frame = self.queue.get() # print(f'[INFO] get frame {frame.shape}') self.idx = self.idx + self.chunk return frame def frame_to_text(self, frame): # frame: [N * 320], N = (context_size + 2 * stride_size) inputs = self.processor(frame, sampling_rate=self.sample_rate, return_tensors="pt", padding=True) with torch.no_grad(): result = self.model(inputs.input_values.to(self.device)) logits = result.logits # [1, N - 1, 32] # cut off stride left = max(0, self.stride_left_size) right = min(logits.shape[1], logits.shape[1] - self.stride_right_size + 1) # +1 to make sure output is the same length as input. # do not cut right if terminated. if self.terminated: right = logits.shape[1] logits = logits[:, left:right] # print(frame.shape, inputs.input_values.shape, logits.shape) predicted_ids = torch.argmax(logits, dim=-1) transcription = self.processor.batch_decode(predicted_ids)[0].lower() # for esperanto # labels = np.array(['ŭ', '»', 'c', 'ĵ', 'ñ', '”', '„', '“', 'ǔ', 'o', 'ĝ', 'm', 'k', 'd', 'a', 'ŝ', 'z', 'i', '«', '—', '‘', 'ĥ', 'f', 'y', 'h', 'j', '|', 'r', 'u', 'ĉ', 's', '–', 'fi', 'l', 'p', '’', 'g', 'v', 't', 'b', 'n', 'e', '[UNK]', '[PAD]']) # labels = np.array([' ', ' ', ' ', '-', '|', 'E', 'T', 'A', 'O', 'N', 'I', 'H', 'S', 'R', 'D', 'L', 'U', 'M', 'W', 'C', 'F', 'G', 'Y', 'P', 'B', 'V', 'K', "'", 'X', 'J', 'Q', 'Z']) # print(''.join(labels[predicted_ids[0].detach().cpu().long().numpy()])) # print(predicted_ids[0]) # print(transcription) return logits[0], predicted_ids[0], transcription # [N,] def run(self): self.listen() while not self.terminated: self.run_step() def clear_queue(self): # clear the queue, to reduce potential latency... print(f'[INFO] clear queue') if self.mode == 'live': self.queue.queue.clear() if self.play: self.output_queue.queue.clear() def warm_up(self): self.listen() print(f'[INFO] warm up ASR live model, expected latency = {self.warm_up_steps / self.fps:.6f}s') t = time.time() for _ in range(self.warm_up_steps): self.run_step() if torch.cuda.is_available(): torch.cuda.synchronize() t = time.time() - t print(f'[INFO] warm-up done, actual latency = {t:.6f}s') self.clear_queue() if __name__ == '__main__': import argparse parser = argparse.ArgumentParser() parser.add_argument('--wav', type=str, default='') parser.add_argument('--play', action='store_true', help="play out the audio") parser.add_argument('--model', type=str, default='cpierse/wav2vec2-large-xlsr-53-esperanto') # parser.add_argument('--model', type=str, default='facebook/wav2vec2-large-960h-lv60-self') parser.add_argument('--save_feats', action='store_true') # audio FPS parser.add_argument('--fps', type=int, default=50) # sliding window left-middle-right length. parser.add_argument('-l', type=int, default=10) parser.add_argument('-m', type=int, default=50) parser.add_argument('-r', type=int, default=10) opt = parser.parse_args() # fix opt.asr_wav = opt.wav opt.asr_play = opt.play opt.asr_model = opt.model opt.asr_save_feats = opt.save_feats if 'deepspeech' in opt.asr_model: raise ValueError("DeepSpeech features should not use this code to extract...") with ASR(opt) as asr: asr.run()