FredZhang7 commited on
Commit
7db28a3
·
1 Parent(s): 60c5c51

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +40 -0
README.md CHANGED
@@ -1,3 +1,43 @@
1
  ---
 
 
 
 
2
  license: cc-by-nc-4.0
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ pipeline_tag: image-classification
3
+ tags:
4
+ - arxiv:2010.07611
5
+ - arxiv:2104.00298
6
  license: cc-by-nc-4.0
7
  ---
8
+
9
+ To be clear, this model is tailored to my image and video classification tasks, not to imagenet. I built EfficientNetV2.5 to outperform the existing EfficientNet b0 to b7 and EfficientNetV2 t to xl models, whether in TensorFlow or PyTorch, in terms of top-1 accuracy, efficiency, and robustness on my datasets and benchmarks.
10
+
11
+
12
+ To change the number of classes, replace the linear classification layer.
13
+ Here's an example to convert the architecture into a training-ready model.
14
+ ```bash
15
+ pip install ptflops
16
+ ```
17
+ ```python
18
+ from ptflops import get_model_complexity_info
19
+ import torch
20
+ import urllib.request
21
+
22
+ nclass = 3 # number of classes in your dataset
23
+ input_size = (3, 304, 304) # recommended image input size
24
+ print_layer_stats = True # prints the statistics for each layer of the model
25
+ verbose = True # prints additional info about the MAC calculation
26
+
27
+ # Download the model. Skip this step if already downloaded
28
+ base_model = "efficientnetv2.5_base_in1k"
29
+ url = f"https://huggingface.co/FredZhang7/efficientnetv2.5_rw_s/resolve/main/{base_model}.pth"
30
+ file_name = f"./{base_model}.pth"
31
+ urllib.request.urlretrieve(url, file_name)
32
+
33
+ model = torch.load(file_name)
34
+ model.classifier = torch.nn.Linear(in_features=1984, out_features=nclass, bias=True)
35
+ macs, nparams = get_model_complexity_info(model, input_size, as_strings=False, print_per_layer_stat=print_layer_stats, verbose=verbose)
36
+ traced_model = torch.jit.trace(model, example_inputs)
37
+
38
+ model_name = f'{base_model}_{"{:.2f}".format(nparams / 1e6)}M_{"{:.2f}".format(macs / 1e9)}G.pth'
39
+ traced_model.save(model_name)
40
+
41
+ # Load the training-ready model
42
+ model = torch.load(model_name)
43
+ ```