FredZhang7 commited on
Commit
80838a4
·
1 Parent(s): 1dc3eb8

add letter, update code

Browse files
Files changed (1) hide show
  1. README.md +3 -3
README.md CHANGED
@@ -7,7 +7,7 @@ license: cc-by-nc-4.0
7
  ---
8
 
9
  To be clear, this model is tailored to my image and video classification tasks, not to imagenet.
10
- I built EfficientNetV2.5 to outperform the existing EfficientNet b0 to b4 and EfficientNetV2 t to l models, whether in TensorFlow or PyTorch, in terms of top-1 accuracy, efficiency, and robustness on my datasets and GVNS benchmarks.
11
 
12
  ## Model Details
13
  - **Model tasks:** Image classification / video classification / feature backbone
@@ -26,7 +26,7 @@ I built EfficientNetV2.5 to outperform the existing EfficientNet b0 to b4 and Ef
26
 
27
  ### Prepare Model for Training
28
  To change the number of classes, replace the linear classification layer.
29
- Here's an example to convert the architecture into a training-ready model.
30
  ```bash
31
  pip install ptflops
32
  ```
@@ -54,7 +54,7 @@ traced_model = torch.jit.trace(model, example_inputs)
54
  model_name = f'{base_model}_{"{:.2f}".format(nparams / 1e6)}M_{"{:.2f}".format(macs / 1e9)}G.pth'
55
  traced_model.save(model_name)
56
 
57
- # Load the training-ready model
58
  model = torch.load(model_name)
59
  ```
60
 
 
7
  ---
8
 
9
  To be clear, this model is tailored to my image and video classification tasks, not to imagenet.
10
+ I built EfficientNetV2.5 s to outperform the existing EfficientNet b0 to b4 and EfficientNetV2 t to l models, whether in TensorFlow or PyTorch, in terms of top-1 accuracy, efficiency, and robustness on my datasets and GVNS benchmarks.
11
 
12
  ## Model Details
13
  - **Model tasks:** Image classification / video classification / feature backbone
 
26
 
27
  ### Prepare Model for Training
28
  To change the number of classes, replace the linear classification layer.
29
+ Here's an example of how to convert the architecture into a trainable model.
30
  ```bash
31
  pip install ptflops
32
  ```
 
54
  model_name = f'{base_model}_{"{:.2f}".format(nparams / 1e6)}M_{"{:.2f}".format(macs / 1e9)}G.pth'
55
  traced_model.save(model_name)
56
 
57
+ # Load the trainable model
58
  model = torch.load(model_name)
59
  ```
60