File size: 5,112 Bytes
66d76af 8a107f3 609112e 8a107f3 66d76af 0e1b634 7cc7300 52562b6 0e1b634 7cc7300 c77de62 7016bc5 6ec832e 0180191 7cc7300 66d76af 5e59942 66d76af 7cc7300 312519c 7cc7300 2ece835 7cc7300 2ece835 8b0209d 4c4b3b9 8b0209d 4c4b3b9 8b0209d 4c4b3b9 8b0209d 2ece835 8b0209d 2ece835 8b0209d dae8b5c 1413ea5 dae8b5c 1413ea5 7cc7300 66d76af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
---
license: creativeml-openrail-m
tags:
- tensorflow.js
- node.js
---
# Google Safesearch Mini Model Card
Initially, the training data consisted of 278,000 images, and the model achieved 99% training and test acc. Now, this model is trained on 2,220,000+ images scraped from Google Images, Reddit, Imgur, and Github.
It predicts the likelihood of an image being nsfw_gore, nsfw_suggestive, and safe.
After 20 epochs on PyTorch, the finetuned InceptionV3 model achieves 94% acc on both training and test data. After 3.3 epochs on Keras, the finetuned Xception model scores 94% acc on training set and 92% on test set.
Using this instead of the stable diffusion safety checker allows users to save 1.12GB of RAM and disk space.
<br>
# PyTorch
```bash
pip install --upgrade transformers torchvision
```
```python
from transformers import AutoModelForImageClassification
from torch import cuda
model = AutoModelForImageClassification.from_pretrained("FredZhang7/google-safesearch-mini", trust_remote_code=True, revision="6fcab6a27595a5f008625ec88c77c10739f3c219")
PATH_TO_IMAGE = 'https://images.unsplash.com/photo-1594568284297-7c64464062b1'
PRINT_TENSOR = False
prediction = model.predict(PATH_TO_IMAGE, device="cuda" if cuda.is_available() else "cpu", print_tensor=PRINT_TENSOR)
print('\033[1;32m' + prediction + '\033[0m' if prediction == 'safe' else '\033[1;33m' + prediction + '\033[0m')
```
Output Example:
![prediction](./output_example.png)
<br>
# Keras
```python
import tensorflow as tf
from PIL import Image
import requests, os
# download the model
url = "https://huggingface.co/FredZhang7/google-safesearch-mini/resolve/main/tensorflow/saved_model.pb"
r = requests.get(url, allow_redirects=True)
if not os.path.exists('tensorflow'):
os.makedirs('tensorflow')
open('tensorflow/saved_model.pb', 'wb').write(r.content)
# download the variables
url = "https://huggingface.co/FredZhang7/google-safesearch-mini/resolve/main/tensorflow/variables/variables.data-00000-of-00001"
r = requests.get(url, allow_redirects=True)
if not os.path.exists('tensorflow/variables'):
os.makedirs('tensorflow/variables')
open('tensorflow/variables/variables.data-00000-of-00001', 'wb').write(r.content)
url = "https://huggingface.co/FredZhang7/google-safesearch-mini/resolve/main/tensorflow/variables/variables.index"
r = requests.get(url, allow_redirects=True)
open('tensorflow/variables/variables.index', 'wb').write(r.content)
# load the model
model = tf.saved_model.load('./tensorflow')
image = Image.open('cat.jpg')
image = image.resize((299, 299))
image = tf.convert_to_tensor(image)
image = tf.expand_dims(image, 0)
# run the model
tensor = model(image)
classes = ['nsfw_gore', 'nsfw_suggestive', 'safe']
prediction = classes[tf.argmax(tensor, 1)[0]]
print('\033[1;32m' + prediction + '\033[0m' if prediction == 'safe' else '\033[1;33m' + prediction + '\033[0m')
```
Output Example:
![prediction](./output_example.png)
<br>
# Tensorflow.js
```bash
npm i @tensorflow/tfjs-node
```
```javascript
const tf = require('@tensorflow/tfjs-node');
const fs = require('fs');
const { pipeline } = require('stream');
const { promisify } = require('util');
const download = async (url, path) => {
// Taken from https://levelup.gitconnected.com/how-to-download-a-file-with-node-js-e2b88fe55409
const streamPipeline = promisify(pipeline);
const response = await fetch(url);
if (!response.ok) {
throw new Error(`unexpected response ${response.statusText}`);
}
await streamPipeline(response.body, fs.createWriteStream(path));
};
async function run() {
// download saved model and variables from https://huggingface.co/FredZhang7/google-safesearch-mini/tree/main/tensorflow
if (!fs.existsSync('tensorflow')) {
fs.mkdirSync('tensorflow');
await download('https://huggingface.co/FredZhang7/google-safesearch-mini/resolve/main/tensorflow/saved_model.pb', 'tensorflow/saved_model.pb');
fs.mkdirSync('tensorflow/variables');
await download('https://huggingface.co/FredZhang7/google-safesearch-mini/resolve/main/tensorflow/variables/variables.data-00000-of-00001', 'tensorflow/variables/variables.data-00000-of-00001');
await download('https://huggingface.co/FredZhang7/google-safesearch-mini/resolve/main/tensorflow/variables/variables.index', 'tensorflow/variables/variables.index');
}
// load model and image
const model = await tf.node.loadSavedModel('./tensorflow/');
const image = tf.node.decodeImage(fs.readFileSync('cat.jpg'), 3);
// predict
const input = tf.expandDims(image, 0);
const tensor = model.predict(input);
const max = tensor.argMax(1);
const classes = ['nsfw_gore', 'nsfw_suggestive', 'safe'];
console.log('\x1b[32m%s\x1b[0m', classes[max.dataSync()[0]], '\n');
}
run();
```
Output Example:
![tfjs output](./tfjs_output.png)
<br>
# Bias and Limitations
Each person's definition of "safe" is different. The images in the dataset are classified as safe/unsafe by Google SafeSearch, Reddit, and Imgur.
It is possible that some images may be safe to others but not to you. |