--- license: creativeml-openrail-m tags: - safety-checker - tensorflow - node.js pipeline_tag: image-classification --- # Google Safesearch Mini Model Card Version 2 is here! This model is trained on 2,220,000+ images scraped from Google Images, Reddit, Imgur, and Github. The InceptionV3 and Xception models have been fine-tuned to predict the likelihood of an image falling into one of three categories: nsfw_gore, nsfw_suggestive, and safe. After 20 epochs on PyTorch, the finetuned InceptionV3 model achieves 94% acc on both training and test data. After 3.3 epochs on Keras, the finetuned Xception model scores 94% acc on training set and 92% on test set. Not only is this model accurate, but it also offers a significant advantage over stable diffusion safety checkers. By using our model, users can save 1.12GB of RAM and disk space.
# PyTorch The PyTorch model runs much slower with transformers, so downloading it externally is a better option. ```bash pip install --upgrade torchvision ``` ```python import torch, os, warnings, requests from io import BytesIO from PIL import Image from urllib.request import urlretrieve from torchvision import transforms PATH_TO_IMAGE = 'https://images.unsplash.com/photo-1594568284297-7c64464062b1' USE_CUDA = False warnings.filterwarnings("ignore") def download_model(): print("Downloading google_safesearch_mini.bin...") urlretrieve("https://huggingface.co/FredZhang7/google-safesearch-mini/resolve/main/pytorch_model.bin", "google_safesearch_mini.bin") def eval(): if not os.path.exists("google_safesearch_mini.bin"): download_model() model = torch.jit.load('./google_safesearch_mini.bin') img = Image.open(PATH_TO_IMAGE).convert('RGB') if not (PATH_TO_IMAGE.startswith('http://') or PATH_TO_IMAGE.startswith('https://')) else Image.open(BytesIO(requests.get(PATH_TO_IMAGE).content)).convert('RGB') transform = transforms.Compose([transforms.Resize(299), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) img = transform(img).unsqueeze(0) if USE_CUDA: img, model = img.cuda(), model.cuda() else: img, model = img.cpu(), model.cpu() model.eval() with torch.no_grad(): out, _ = model(img) _, predicted = torch.max(out.data, 1) classes = {0: 'nsfw_gore', 1: 'nsfw_suggestive', 2: 'safe'} # account for edge cases if predicted[0] != 2 and abs(out[0][2] - out[0][predicted[0]]) > 0.20: img = Image.new('RGB', image.size, color = (0, 255, 255)) print("\033[93m" + "safe" + "\033[0m") else: print('\n\033[1;31m' + classes[predicted.item()] + '\033[0m' if predicted.item() != 2 else '\033[1;32m' + classes[predicted.item()] + '\033[0m\n') if __name__ == '__main__': eval() ``` Output Example: ![prediction](./output_example.png)
# Keras ```python import tensorflow as tf from PIL import Image import requests, os # download the model url = "https://huggingface.co/FredZhang7/google-safesearch-mini/resolve/main/tensorflow/saved_model.pb" r = requests.get(url, allow_redirects=True) if not os.path.exists('tensorflow'): os.makedirs('tensorflow') open('tensorflow/saved_model.pb', 'wb').write(r.content) # download the variables url = "https://huggingface.co/FredZhang7/google-safesearch-mini/resolve/main/tensorflow/variables/variables.data-00000-of-00001" r = requests.get(url, allow_redirects=True) if not os.path.exists('tensorflow/variables'): os.makedirs('tensorflow/variables') open('tensorflow/variables/variables.data-00000-of-00001', 'wb').write(r.content) url = "https://huggingface.co/FredZhang7/google-safesearch-mini/resolve/main/tensorflow/variables/variables.index" r = requests.get(url, allow_redirects=True) open('tensorflow/variables/variables.index', 'wb').write(r.content) # load the model model = tf.saved_model.load('./tensorflow') image = Image.open('cat.jpg') image = image.resize((299, 299)) image = tf.convert_to_tensor(image) image = tf.expand_dims(image, 0) # run the model tensor = model(image) classes = ['nsfw_gore', 'nsfw_suggestive', 'safe'] prediction = classes[tf.argmax(tensor, 1)[0]] print('\033[1;32m' + prediction + '\033[0m' if prediction == 'safe' else '\033[1;33m' + prediction + '\033[0m') ``` Output Example: ![prediction](./output_example.png)
# Tensorflow.js ```bash npm i @tensorflow/tfjs-node ``` ```javascript const tf = require('@tensorflow/tfjs-node'); const fs = require('fs'); const { pipeline } = require('stream'); const { promisify } = require('util'); const download = async (url, path) => { // Taken from https://levelup.gitconnected.com/how-to-download-a-file-with-node-js-e2b88fe55409 const streamPipeline = promisify(pipeline); const response = await fetch(url); if (!response.ok) { throw new Error(`unexpected response ${response.statusText}`); } await streamPipeline(response.body, fs.createWriteStream(path)); }; async function run() { // download saved model and variables from https://huggingface.co/FredZhang7/google-safesearch-mini/tree/main/tensorflow if (!fs.existsSync('tensorflow')) { fs.mkdirSync('tensorflow'); await download('https://huggingface.co/FredZhang7/google-safesearch-mini/resolve/main/tensorflow/saved_model.pb', 'tensorflow/saved_model.pb'); fs.mkdirSync('tensorflow/variables'); await download('https://huggingface.co/FredZhang7/google-safesearch-mini/resolve/main/tensorflow/variables/variables.data-00000-of-00001', 'tensorflow/variables/variables.data-00000-of-00001'); await download('https://huggingface.co/FredZhang7/google-safesearch-mini/resolve/main/tensorflow/variables/variables.index', 'tensorflow/variables/variables.index'); } // load model and image const model = await tf.node.loadSavedModel('./tensorflow/'); const image = tf.node.decodeImage(fs.readFileSync('cat.jpg'), 3); // predict const input = tf.expandDims(image, 0); const tensor = model.predict(input); const max = tensor.argMax(1); const classes = ['nsfw_gore', 'nsfw_suggestive', 'safe']; console.log('\x1b[32m%s\x1b[0m', classes[max.dataSync()[0]], '\n'); } run(); ``` Output Example: ![tfjs output](./tfjs_output.png)
# Bias and Limitations Each person's definition of "safe" is different. The images in the dataset are classified as safe/unsafe by Google SafeSearch, Reddit, and Imgur. It is possible that some images may be safe to others but not to you. Also, when a model encounters an image with things it hasn't seen, it likely makes wrong predictions. This is why in the PyTorch example, I accounted for the "edge cases" before printing the predictions.