Upload ./configuration_yi.py with huggingface_hub
Browse files- configuration_yi.py +121 -0
configuration_yi.py
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" Yi model configuration"""
|
2 |
+
from transformers.configuration_utils import PretrainedConfig
|
3 |
+
from transformers.utils import logging
|
4 |
+
|
5 |
+
logger = logging.get_logger(__name__)
|
6 |
+
|
7 |
+
Yi_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
|
8 |
+
|
9 |
+
|
10 |
+
class YiConfig(PretrainedConfig):
|
11 |
+
r"""
|
12 |
+
This is the configuration class to store the configuration of a [`YiModel`]. It is used to instantiate an Yi
|
13 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
14 |
+
defaults will yield a similar configuration to that of the Yi model.
|
15 |
+
|
16 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
17 |
+
documentation from [`PretrainedConfig`] for more information.
|
18 |
+
|
19 |
+
|
20 |
+
Args:
|
21 |
+
vocab_size (`int`, *optional*, defaults to 64000):
|
22 |
+
Vocabulary size of the Yi model. Defines the number of different tokens that can be represented by the
|
23 |
+
`inputs_ids` passed when calling [`YiModel`]
|
24 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
25 |
+
Dimension of the hidden representations.
|
26 |
+
intermediate_size (`int`, *optional*, defaults to 11008):
|
27 |
+
Dimension of the MLP representations.
|
28 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
29 |
+
Number of hidden layers in the Transformer encoder.
|
30 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
31 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
32 |
+
num_key_value_heads (`int`, *optional*):
|
33 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
34 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
35 |
+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
36 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
37 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
38 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
39 |
+
`num_attention_heads`.
|
40 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
41 |
+
The non-linear activation function (function or string) in the decoder.
|
42 |
+
max_position_embeddings (`int`, *optional*, defaults to 4096):
|
43 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
44 |
+
just in case (e.g., 512 or 1024 or 2048 or 4096).
|
45 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
46 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
47 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-5):
|
48 |
+
The epsilon used by the rms normalization layers.
|
49 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
50 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
51 |
+
relevant if `config.is_decoder=True`.
|
52 |
+
tie_word_embeddings(`bool`, *optional*, defaults to `False`):
|
53 |
+
Whether to tie weight embeddings
|
54 |
+
output_attentions (`bool`, *optional*, defaults to `False`):
|
55 |
+
Whether or not to output attentions.
|
56 |
+
rope_theta (`float`, *optional*, defaults to 5000000.0):
|
57 |
+
The base period of the RoPE embeddings.
|
58 |
+
Example:
|
59 |
+
|
60 |
+
```python
|
61 |
+
>>> from transformers import YiModel, YiConfig
|
62 |
+
|
63 |
+
>>> # Initializing a Yi style configuration
|
64 |
+
>>> configuration = YiConfig()
|
65 |
+
|
66 |
+
>>> # Initializing a model from the Yi style configuration
|
67 |
+
>>> model = YiModel(configuration)
|
68 |
+
|
69 |
+
>>> # Accessing the model configuration
|
70 |
+
>>> configuration = model.config
|
71 |
+
```"""
|
72 |
+
model_type = "Yi"
|
73 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
74 |
+
|
75 |
+
def __init__(
|
76 |
+
self,
|
77 |
+
vocab_size=64000,
|
78 |
+
hidden_size=4096,
|
79 |
+
intermediate_size=11008,
|
80 |
+
num_hidden_layers=32,
|
81 |
+
num_attention_heads=32,
|
82 |
+
num_key_value_heads=4,
|
83 |
+
hidden_act="silu",
|
84 |
+
max_position_embeddings=4096,
|
85 |
+
initializer_range=0.02,
|
86 |
+
rms_norm_eps=1e-5,
|
87 |
+
use_cache=True,
|
88 |
+
pad_token_id=0,
|
89 |
+
bos_token_id=1,
|
90 |
+
eos_token_id=2,
|
91 |
+
tie_word_embeddings=False,
|
92 |
+
output_attentions=False,
|
93 |
+
rope_theta=5000000.0,
|
94 |
+
**kwargs,
|
95 |
+
):
|
96 |
+
self.vocab_size = vocab_size
|
97 |
+
self.max_position_embeddings = max_position_embeddings
|
98 |
+
self.hidden_size = hidden_size
|
99 |
+
self.intermediate_size = intermediate_size
|
100 |
+
self.num_hidden_layers = num_hidden_layers
|
101 |
+
self.num_attention_heads = num_attention_heads
|
102 |
+
|
103 |
+
# for backward compatibility
|
104 |
+
if num_key_value_heads is None:
|
105 |
+
num_key_value_heads = num_attention_heads
|
106 |
+
|
107 |
+
self.num_key_value_heads = num_key_value_heads
|
108 |
+
self.hidden_act = hidden_act
|
109 |
+
self.initializer_range = initializer_range
|
110 |
+
self.rms_norm_eps = rms_norm_eps
|
111 |
+
self.use_cache = use_cache
|
112 |
+
self.output_attentions = output_attentions
|
113 |
+
self.rope_theta = rope_theta
|
114 |
+
|
115 |
+
super().__init__(
|
116 |
+
pad_token_id=pad_token_id,
|
117 |
+
bos_token_id=bos_token_id,
|
118 |
+
eos_token_id=eos_token_id,
|
119 |
+
tie_word_embeddings=tie_word_embeddings,
|
120 |
+
**kwargs,
|
121 |
+
)
|