Question Answering
Safetensors
upcycling-qwen2-moe
biology
medical
custom_code
File size: 6,197 Bytes
bd4c3cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
# coding=utf-8
# Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Qwen2MoE model configuration"""

from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging
import torch


logger = logging.get_logger(__name__)


class Qwen2Config(PretrainedConfig):
    def __init__(
        self,
        vocab_size=151936,
        hidden_size=4096,
        intermediate_size=22016,
        num_hidden_layers=32,
        num_attention_heads=32,
        num_key_value_heads=32,
        hidden_act="silu",
        max_position_embeddings=32768,
        initializer_range=0.02,
        rms_norm_eps=1e-6,
        use_cache=True,
        tie_word_embeddings=False,
        rope_theta=10000.0,
        use_sliding_window=False,
        sliding_window=4096,
        max_window_layers=28,
        attention_dropout=0.0,
        **kwargs,
    ):              
        self.vocab_size = vocab_size
        self.max_position_embeddings = max_position_embeddings
        self.hidden_size = hidden_size
        self.intermediate_size = intermediate_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.use_sliding_window = use_sliding_window
        self.sliding_window = sliding_window
        self.max_window_layers = max_window_layers

        # for backward compatibility
        if num_key_value_heads is None:
            num_key_value_heads = num_attention_heads

        self.num_key_value_heads = num_key_value_heads
        self.hidden_act = hidden_act
        self.initializer_range = initializer_range
        self.rms_norm_eps = rms_norm_eps
        self.use_cache = use_cache
        self.rope_theta = rope_theta
        self.attention_dropout = attention_dropout

        super().__init__(
            tie_word_embeddings=tie_word_embeddings,
            **kwargs,
        )


class Qwen2MoeConfig(PretrainedConfig):

    model_type = "qwen2_moe"
    keys_to_ignore_at_inference = ["past_key_values"]

    def __init__(
        self,
        vocab_size=151936,
        hidden_size=2048,
        intermediate_size=5632,
        num_hidden_layers=24,
        num_attention_heads=16,
        num_key_value_heads=16,
        hidden_act="silu",
        max_position_embeddings=32768,
        initializer_range=0.02,
        rms_norm_eps=1e-6,
        use_cache=True,
        tie_word_embeddings=False,
        rope_theta=10000.0,
        use_sliding_window=False,
        sliding_window=4096,
        max_window_layers=28,
        attention_dropout=0.0,
        
        decoder_sparse_step=1,
        moe_intermediate_size=1408,
        shared_expert_intermediate_size=5632,
        num_experts_per_tok=4,
        num_experts=60,
        norm_topk_prob=False,
        output_router_logits=False,
        router_aux_loss_coef=0.001,
        mlp_only_layers=None,
        **kwargs,
    ):
        self.vocab_size = vocab_size
        self.max_position_embeddings = max_position_embeddings
        self.hidden_size = hidden_size
        self.intermediate_size = intermediate_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.use_sliding_window = use_sliding_window
        self.sliding_window = sliding_window
        self.max_window_layers = max_window_layers

        self.num_key_value_heads = num_key_value_heads
        self.hidden_act = hidden_act
        self.initializer_range = initializer_range
        self.rms_norm_eps = rms_norm_eps
        self.use_cache = use_cache
        self.rope_theta = rope_theta
        self.attention_dropout = attention_dropout

        # MoE arguments
        self.decoder_sparse_step = decoder_sparse_step
        self.moe_intermediate_size = moe_intermediate_size
        self.shared_expert_intermediate_size = shared_expert_intermediate_size
        self.num_experts_per_tok = num_experts_per_tok
        self.num_experts = num_experts
        self.norm_topk_prob = norm_topk_prob
        self.output_router_logits = output_router_logits
        self.router_aux_loss_coef = router_aux_loss_coef
        self.mlp_only_layers = [] if mlp_only_layers is None else mlp_only_layers

        super().__init__(
            tie_word_embeddings=tie_word_embeddings,
            **kwargs,
        )


class UpcyclingQwen2MoeConfig(Qwen2Config):
    model_type="upcycling-qwen2-moe"
    #upcycling form Qwen2-1_5B
    def __init__(
        self,
        decoder_sparse_step=1,
        num_experts_per_tok=2,
        num_experts=7,
        norm_topk_prob=False,
        output_router_logits=False,
        router_aux_loss_coef=0.000,
        mlp_only_layers=None,#MoE only last 2 layers
        share_flag=False,
        attn_init_change=False,
        language_gate=False,
        **kwargs
    ):
        super().__init__(**kwargs)
        # MoE arguments
        self.decoder_sparse_step = decoder_sparse_step
        self.moe_intermediate_size = self.intermediate_size
        self.shared_expert_intermediate_size = self.intermediate_size
        self.norm_topk_prob = norm_topk_prob
        self.output_router_logits = output_router_logits
        self.router_aux_loss_coef = router_aux_loss_coef
        # self.mlp_only_layers = [] if mlp_only_layers is None else mlp_only_layers
        self.mlp_only_layers=torch.arange(self.num_hidden_layers).tolist()[:-2]
        self.share_flag=share_flag
        self.num_experts_per_tok = num_experts_per_tok
        self.num_experts = num_experts
        self.attn_init_change=attn_init_change
        self.language_gate=language_gate