|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Qwen2MoE model configuration""" |
|
|
|
from transformers.configuration_utils import PretrainedConfig |
|
from transformers.utils import logging |
|
import torch |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class Qwen2Config(PretrainedConfig): |
|
def __init__( |
|
self, |
|
vocab_size=151936, |
|
hidden_size=4096, |
|
intermediate_size=22016, |
|
num_hidden_layers=32, |
|
num_attention_heads=32, |
|
num_key_value_heads=32, |
|
hidden_act="silu", |
|
max_position_embeddings=32768, |
|
initializer_range=0.02, |
|
rms_norm_eps=1e-6, |
|
use_cache=True, |
|
tie_word_embeddings=False, |
|
rope_theta=10000.0, |
|
use_sliding_window=False, |
|
sliding_window=4096, |
|
max_window_layers=28, |
|
attention_dropout=0.0, |
|
**kwargs, |
|
): |
|
self.vocab_size = vocab_size |
|
self.max_position_embeddings = max_position_embeddings |
|
self.hidden_size = hidden_size |
|
self.intermediate_size = intermediate_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.use_sliding_window = use_sliding_window |
|
self.sliding_window = sliding_window |
|
self.max_window_layers = max_window_layers |
|
|
|
|
|
if num_key_value_heads is None: |
|
num_key_value_heads = num_attention_heads |
|
|
|
self.num_key_value_heads = num_key_value_heads |
|
self.hidden_act = hidden_act |
|
self.initializer_range = initializer_range |
|
self.rms_norm_eps = rms_norm_eps |
|
self.use_cache = use_cache |
|
self.rope_theta = rope_theta |
|
self.attention_dropout = attention_dropout |
|
|
|
super().__init__( |
|
tie_word_embeddings=tie_word_embeddings, |
|
**kwargs, |
|
) |
|
|
|
|
|
class Qwen2MoeConfig(PretrainedConfig): |
|
|
|
model_type = "qwen2_moe" |
|
keys_to_ignore_at_inference = ["past_key_values"] |
|
|
|
def __init__( |
|
self, |
|
vocab_size=151936, |
|
hidden_size=2048, |
|
intermediate_size=5632, |
|
num_hidden_layers=24, |
|
num_attention_heads=16, |
|
num_key_value_heads=16, |
|
hidden_act="silu", |
|
max_position_embeddings=32768, |
|
initializer_range=0.02, |
|
rms_norm_eps=1e-6, |
|
use_cache=True, |
|
tie_word_embeddings=False, |
|
rope_theta=10000.0, |
|
use_sliding_window=False, |
|
sliding_window=4096, |
|
max_window_layers=28, |
|
attention_dropout=0.0, |
|
|
|
decoder_sparse_step=1, |
|
moe_intermediate_size=1408, |
|
shared_expert_intermediate_size=5632, |
|
num_experts_per_tok=4, |
|
num_experts=60, |
|
norm_topk_prob=False, |
|
output_router_logits=False, |
|
router_aux_loss_coef=0.001, |
|
mlp_only_layers=None, |
|
**kwargs, |
|
): |
|
self.vocab_size = vocab_size |
|
self.max_position_embeddings = max_position_embeddings |
|
self.hidden_size = hidden_size |
|
self.intermediate_size = intermediate_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.use_sliding_window = use_sliding_window |
|
self.sliding_window = sliding_window |
|
self.max_window_layers = max_window_layers |
|
|
|
self.num_key_value_heads = num_key_value_heads |
|
self.hidden_act = hidden_act |
|
self.initializer_range = initializer_range |
|
self.rms_norm_eps = rms_norm_eps |
|
self.use_cache = use_cache |
|
self.rope_theta = rope_theta |
|
self.attention_dropout = attention_dropout |
|
|
|
|
|
self.decoder_sparse_step = decoder_sparse_step |
|
self.moe_intermediate_size = moe_intermediate_size |
|
self.shared_expert_intermediate_size = shared_expert_intermediate_size |
|
self.num_experts_per_tok = num_experts_per_tok |
|
self.num_experts = num_experts |
|
self.norm_topk_prob = norm_topk_prob |
|
self.output_router_logits = output_router_logits |
|
self.router_aux_loss_coef = router_aux_loss_coef |
|
self.mlp_only_layers = [] if mlp_only_layers is None else mlp_only_layers |
|
|
|
super().__init__( |
|
tie_word_embeddings=tie_word_embeddings, |
|
**kwargs, |
|
) |
|
|
|
|
|
class UpcyclingQwen2MoeConfig(Qwen2Config): |
|
model_type="upcycling-qwen2-moe" |
|
|
|
def __init__( |
|
self, |
|
decoder_sparse_step=1, |
|
num_experts_per_tok=2, |
|
num_experts=7, |
|
norm_topk_prob=False, |
|
output_router_logits=False, |
|
router_aux_loss_coef=0.000, |
|
mlp_only_layers=None, |
|
share_flag=False, |
|
attn_init_change=False, |
|
language_gate=False, |
|
**kwargs |
|
): |
|
super().__init__(**kwargs) |
|
|
|
self.decoder_sparse_step = decoder_sparse_step |
|
self.moe_intermediate_size = self.intermediate_size |
|
self.shared_expert_intermediate_size = self.intermediate_size |
|
self.norm_topk_prob = norm_topk_prob |
|
self.output_router_logits = output_router_logits |
|
self.router_aux_loss_coef = router_aux_loss_coef |
|
|
|
self.mlp_only_layers=torch.arange(self.num_hidden_layers).tolist()[:-2] |
|
self.share_flag=share_flag |
|
self.num_experts_per_tok = num_experts_per_tok |
|
self.num_experts = num_experts |
|
self.attn_init_change=attn_init_change |
|
self.language_gate=language_gate |
|
|
|
|
|
|