Question Answering
Safetensors
upcycling-qwen2-moe
biology
medical
custom_code
Apollo-MoE-1.5B / configuration_upcycling_qwen2_moe.py
BossRui's picture
Upload configuration_upcycling_qwen2_moe.py with huggingface_hub
bd4c3cc verified
# coding=utf-8
# Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Qwen2MoE model configuration"""
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging
import torch
logger = logging.get_logger(__name__)
class Qwen2Config(PretrainedConfig):
def __init__(
self,
vocab_size=151936,
hidden_size=4096,
intermediate_size=22016,
num_hidden_layers=32,
num_attention_heads=32,
num_key_value_heads=32,
hidden_act="silu",
max_position_embeddings=32768,
initializer_range=0.02,
rms_norm_eps=1e-6,
use_cache=True,
tie_word_embeddings=False,
rope_theta=10000.0,
use_sliding_window=False,
sliding_window=4096,
max_window_layers=28,
attention_dropout=0.0,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.use_sliding_window = use_sliding_window
self.sliding_window = sliding_window
self.max_window_layers = max_window_layers
# for backward compatibility
if num_key_value_heads is None:
num_key_value_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
self.attention_dropout = attention_dropout
super().__init__(
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
class Qwen2MoeConfig(PretrainedConfig):
model_type = "qwen2_moe"
keys_to_ignore_at_inference = ["past_key_values"]
def __init__(
self,
vocab_size=151936,
hidden_size=2048,
intermediate_size=5632,
num_hidden_layers=24,
num_attention_heads=16,
num_key_value_heads=16,
hidden_act="silu",
max_position_embeddings=32768,
initializer_range=0.02,
rms_norm_eps=1e-6,
use_cache=True,
tie_word_embeddings=False,
rope_theta=10000.0,
use_sliding_window=False,
sliding_window=4096,
max_window_layers=28,
attention_dropout=0.0,
decoder_sparse_step=1,
moe_intermediate_size=1408,
shared_expert_intermediate_size=5632,
num_experts_per_tok=4,
num_experts=60,
norm_topk_prob=False,
output_router_logits=False,
router_aux_loss_coef=0.001,
mlp_only_layers=None,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.use_sliding_window = use_sliding_window
self.sliding_window = sliding_window
self.max_window_layers = max_window_layers
self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
self.attention_dropout = attention_dropout
# MoE arguments
self.decoder_sparse_step = decoder_sparse_step
self.moe_intermediate_size = moe_intermediate_size
self.shared_expert_intermediate_size = shared_expert_intermediate_size
self.num_experts_per_tok = num_experts_per_tok
self.num_experts = num_experts
self.norm_topk_prob = norm_topk_prob
self.output_router_logits = output_router_logits
self.router_aux_loss_coef = router_aux_loss_coef
self.mlp_only_layers = [] if mlp_only_layers is None else mlp_only_layers
super().__init__(
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
class UpcyclingQwen2MoeConfig(Qwen2Config):
model_type="upcycling-qwen2-moe"
#upcycling form Qwen2-1_5B
def __init__(
self,
decoder_sparse_step=1,
num_experts_per_tok=2,
num_experts=7,
norm_topk_prob=False,
output_router_logits=False,
router_aux_loss_coef=0.000,
mlp_only_layers=None,#MoE only last 2 layers
share_flag=False,
attn_init_change=False,
language_gate=False,
**kwargs
):
super().__init__(**kwargs)
# MoE arguments
self.decoder_sparse_step = decoder_sparse_step
self.moe_intermediate_size = self.intermediate_size
self.shared_expert_intermediate_size = self.intermediate_size
self.norm_topk_prob = norm_topk_prob
self.output_router_logits = output_router_logits
self.router_aux_loss_coef = router_aux_loss_coef
# self.mlp_only_layers = [] if mlp_only_layers is None else mlp_only_layers
self.mlp_only_layers=torch.arange(self.num_hidden_layers).tolist()[:-2]
self.share_flag=share_flag
self.num_experts_per_tok = num_experts_per_tok
self.num_experts = num_experts
self.attn_init_change=attn_init_change
self.language_gate=language_gate