jymcc commited on
Commit
7cabfa2
·
1 Parent(s): 8dd2443
Files changed (3) hide show
  1. config.json +0 -0
  2. modeling_baichuan copy.py +0 -801
  3. modeling_baichuan.py +16 -0
config.json CHANGED
The diff for this file is too large to render. See raw diff
 
modeling_baichuan copy.py DELETED
@@ -1,801 +0,0 @@
1
- # Copyright 2023 Baichuan Inc. All Rights Reserved.
2
-
3
- # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
4
- #
5
- # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
6
- # and OPT implementations in this library. It has been modified from its
7
- # original forms to accommodate minor architectural differences compared
8
- # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
9
- #
10
- # Licensed under the Apache License, Version 2.0 (the "License");
11
- # you may not use this file except in compliance with the License.
12
- # You may obtain a copy of the License at
13
- #
14
- # http://www.apache.org/licenses/LICENSE-2.0
15
- #
16
- # Unless required by applicable law or agreed to in writing, software
17
- # distributed under the License is distributed on an "AS IS" BASIS,
18
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
19
- # See the License for the specific language governing permissions and
20
- # limitations under the License.
21
-
22
-
23
- from .configuration_baichuan import BaichuanConfig
24
- from .generation_utils import build_chat_input, TextIterStreamer
25
-
26
- import math
27
- from typing import List, Optional, Tuple, Union
28
- from threading import Thread
29
-
30
- import torch
31
- import torch.utils.checkpoint
32
- from torch import nn
33
- from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
34
- from torch.nn import functional as F
35
- from transformers import PreTrainedModel, PretrainedConfig
36
- from transformers.activations import ACT2FN
37
- from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
38
- from transformers.generation.utils import GenerationConfig
39
- from transformers.utils import logging, ContextManagers
40
-
41
- import os
42
- from contextlib import contextmanager
43
- logger = logging.get_logger(__name__)
44
-
45
- try:
46
- from xformers import ops as xops
47
- except ImportError:
48
- xops = None
49
- logger.warning(
50
- "Xformers is not installed correctly. If you want to use memory_efficient_attention to accelerate training use the following command to install Xformers\npip install xformers."
51
- )
52
-
53
-
54
- # Copied from transformers.models.bart.modeling_bart._make_causal_mask
55
- def _make_causal_mask(
56
- input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
57
- ):
58
- """
59
- Make causal mask used for bi-directional self-attention.
60
- """
61
- bsz, tgt_len = input_ids_shape
62
- mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device)
63
- mask_cond = torch.arange(mask.size(-1), device=device)
64
- mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
65
- mask = mask.to(dtype)
66
-
67
- if past_key_values_length > 0:
68
- mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
69
- return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
70
-
71
- def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
72
- """
73
- Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
74
- """
75
- if len(mask.size()) == 3:
76
- bsz, src_len, _ = mask.size()
77
- tgt_len = tgt_len if tgt_len is not None else src_len
78
- expanded_mask = mask[:,None,:,:].expand(bsz, 1, tgt_len, src_len).to(dtype)
79
- else:
80
- bsz, src_len = mask.size()
81
- tgt_len = tgt_len if tgt_len is not None else src_len
82
- expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
83
-
84
- inverted_mask = 1.0 - expanded_mask
85
-
86
- return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
87
-
88
-
89
- class RMSNorm(nn.Module):
90
- def __init__(self, hidden_size, eps=1e-6):
91
- """
92
- RMSNorm is equivalent to T5LayerNorm
93
- """
94
- super().__init__()
95
- self.weight = nn.Parameter(torch.ones(hidden_size))
96
- self.variance_epsilon = eps
97
-
98
- def forward(self, hidden_states):
99
- variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
100
- hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
101
-
102
- # convert into half-precision if necessary
103
- if self.weight.dtype in [torch.float16, torch.bfloat16]:
104
- hidden_states = hidden_states.to(self.weight.dtype)
105
-
106
- return self.weight * hidden_states
107
-
108
-
109
- class RotaryEmbedding(torch.nn.Module):
110
- def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
111
- super().__init__()
112
- self.inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim))
113
- self.max_seq_len_cached = max_position_embeddings
114
- t = torch.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=torch.float32)
115
- freqs = torch.outer(t, self.inv_freq)
116
- emb = torch.cat((freqs, freqs), dim=-1)
117
- self.cos_cached = emb.cos()[None, None, :, :].to(torch.float32)
118
- self.sin_cached = emb.sin()[None, None, :, :].to(torch.float32)
119
- def forward(self, x, seq_len=None):
120
- # x: [bs, num_attention_heads, seq_len, head_size]
121
- # This `if` block is unlikely to be run after we build sin/cos in `__init__`. Keep the logic here just in case.
122
- if seq_len > self.max_seq_len_cached:
123
- self.max_seq_len_cached = seq_len
124
- t = torch.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=torch.float32)
125
- freqs = torch.outer(t, self.inv_freq)
126
- emb = torch.cat((freqs, freqs), dim=-1)
127
- self.cos_cached = emb.cos()[None, None, :, :].to(torch.float32).to(x.device)
128
- self.sin_cached = emb.sin()[None, None, :, :].to(torch.float32).to(x.device)
129
- elif self.cos_cached.device != x.device:
130
- self.cos_cached = self.cos_cached.to(x.device)
131
- self.sin_cached = self.sin_cached.to(x.device)
132
- return (
133
- self.cos_cached[:, :, :seq_len, ...],
134
- self.sin_cached[:, :, :seq_len, ...],
135
- )
136
-
137
-
138
- def rotate_half(x):
139
- """Rotates half the hidden dims of the input."""
140
- x1 = x[..., : x.shape[-1] // 2]
141
- x2 = x[..., x.shape[-1] // 2:]
142
- return torch.cat((-x2, x1), dim=-1)
143
-
144
-
145
- def apply_rotary_pos_emb(q, k, cos_, sin_, position_ids):
146
- cos = cos_.squeeze(1).squeeze(0) # [seq_len, dim]
147
- sin = sin_.squeeze(1).squeeze(0) # [seq_len, dim]
148
- cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
149
- sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
150
- q_embed = (q.float() * cos) + (rotate_half(q.float()) * sin)
151
- k_embed = (k.float() * cos) + (rotate_half(k.float()) * sin)
152
- return q_embed.to(q.dtype), k_embed.to(k.dtype)
153
-
154
-
155
- class MLP(nn.Module):
156
- def __init__(
157
- self,
158
- hidden_size: int,
159
- intermediate_size: int,
160
- hidden_act: str,
161
- ):
162
- super().__init__()
163
- self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
164
- self.down_proj = nn.Linear(intermediate_size, hidden_size, bias=False)
165
- self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
166
- self.act_fn = ACT2FN[hidden_act]
167
-
168
- def forward(self, x):
169
- return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
170
-
171
-
172
- class Attention(nn.Module):
173
- """Multi-headed attention from 'Attention Is All You Need' paper"""
174
- def __init__(self, config: BaichuanConfig):
175
- super().__init__()
176
- self.config = config
177
- self.hidden_size = config.hidden_size
178
- self.num_heads = config.num_attention_heads
179
- self.head_dim = self.hidden_size // self.num_heads
180
- self.max_position_embeddings = config.max_position_embeddings
181
-
182
- if (self.head_dim * self.num_heads) != self.hidden_size:
183
- raise ValueError(
184
- f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
185
- f" and `num_heads`: {self.num_heads})."
186
- )
187
- self.W_pack = nn.Linear(self.hidden_size, 3 * self.hidden_size, bias=False)
188
- self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
189
- self.rotary_emb = RotaryEmbedding(self.head_dim, max_position_embeddings=self.max_position_embeddings)
190
-
191
- def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
192
- return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
193
-
194
- def forward(
195
- self,
196
- hidden_states: torch.Tensor,
197
- attention_mask: Optional[torch.Tensor] = None,
198
- position_ids: Optional[torch.LongTensor] = None,
199
- past_key_value: Optional[Tuple[torch.Tensor]] = None,
200
- output_attentions: bool = False,
201
- use_cache: bool = False,
202
- ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
203
- bsz, q_len, _ = hidden_states.size()
204
-
205
- proj = self.W_pack(hidden_states)
206
- proj = proj.unflatten(-1, (3, self.hidden_size)).unsqueeze(0).transpose(0, -2).squeeze(-2)
207
- query_states = proj[0].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
208
- key_states = proj[1].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
209
- value_states = proj[2].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
210
-
211
- kv_seq_len = key_states.shape[-2]
212
- if past_key_value is not None:
213
- kv_seq_len += past_key_value[0].shape[-2]
214
- cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
215
- query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
216
- # [bsz, nh, t, hd]
217
-
218
- if past_key_value is not None:
219
- # reuse k, v, self_attention
220
- key_states = torch.cat([past_key_value[0], key_states], dim=2)
221
- value_states = torch.cat([past_key_value[1], value_states], dim=2)
222
-
223
- past_key_value = (key_states, value_states) if use_cache else None
224
- if xops is not None and self.training:
225
- attn_weights = None
226
- query_states = query_states.transpose(1, 2)
227
- key_states = key_states.transpose(1, 2)
228
- value_states = value_states.transpose(1, 2)
229
- attn_output = xops.memory_efficient_attention(
230
- query_states, key_states, value_states, attn_bias=xops.LowerTriangularMask()
231
- )
232
- else:
233
- with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=True, enable_mem_efficient=True):
234
- attn_output = F.scaled_dot_product_attention(query_states, key_states, value_states, attn_mask = attention_mask)
235
- attn_output = attn_output.transpose(1, 2)
236
- attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
237
- attn_output = self.o_proj(attn_output)
238
-
239
- if not output_attentions:
240
- attn_weights = None
241
-
242
- return attn_output, attn_weights, past_key_value
243
-
244
-
245
- class DecoderLayer(nn.Module):
246
- def __init__(self, config: BaichuanConfig):
247
- super().__init__()
248
- self.hidden_size = config.hidden_size
249
- self.self_attn = Attention(config=config)
250
- self.mlp = MLP(
251
- hidden_size=self.hidden_size,
252
- intermediate_size=config.intermediate_size,
253
- hidden_act=config.hidden_act,
254
- )
255
- self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
256
- self.post_attention_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
257
-
258
- def forward(
259
- self,
260
- hidden_states: torch.Tensor,
261
- attention_mask: Optional[torch.Tensor] = None,
262
- position_ids: Optional[torch.LongTensor] = None,
263
- past_key_value: Optional[Tuple[torch.Tensor]] = None,
264
- output_attentions: Optional[bool] = False,
265
- use_cache: Optional[bool] = False,
266
- ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
267
-
268
- residual = hidden_states
269
-
270
- hidden_states = self.input_layernorm(hidden_states)
271
-
272
- # Self Attention
273
- hidden_states, self_attn_weights, present_key_value = self.self_attn(
274
- hidden_states=hidden_states,
275
- attention_mask=attention_mask,
276
- position_ids=position_ids,
277
- past_key_value=past_key_value,
278
- output_attentions=output_attentions,
279
- use_cache=use_cache,
280
- )
281
- hidden_states = residual + hidden_states
282
-
283
- # Fully Connected
284
- residual = hidden_states
285
- hidden_states = self.post_attention_layernorm(hidden_states)
286
- hidden_states = self.mlp(hidden_states)
287
- hidden_states = residual + hidden_states
288
-
289
- outputs = (hidden_states,)
290
-
291
- if output_attentions:
292
- outputs += (self_attn_weights,)
293
-
294
- if use_cache:
295
- outputs += (present_key_value,)
296
-
297
- return outputs
298
-
299
-
300
- class BaichuanPreTrainedModel(PreTrainedModel):
301
- config_class = BaichuanConfig
302
- base_model_prefix = "model"
303
- supports_gradient_checkpointing = True
304
- _no_split_modules = ["DecoderLayer"]
305
- _keys_to_ignore_on_load_unexpected = [r"decoder\.version"]
306
-
307
- def _init_weights(self, module):
308
- std = self.config.initializer_range
309
- if isinstance(module, nn.Linear):
310
- module.weight.data.normal_(mean=0.0, std=std)
311
- if module.bias is not None:
312
- module.bias.data.zero_()
313
- elif isinstance(module, nn.Embedding):
314
- module.weight.data.normal_(mean=0.0, std=std)
315
- if module.padding_idx is not None:
316
- module.weight.data[module.padding_idx].zero_()
317
-
318
- def _set_gradient_checkpointing(self, module, value=False):
319
- if isinstance(module, BaichuanModel):
320
- module.gradient_checkpointing = value
321
-
322
-
323
- class BaichuanModel(BaichuanPreTrainedModel):
324
- def __init__(self, config: BaichuanConfig):
325
- super().__init__(config)
326
- self.padding_idx = config.pad_token_id
327
- self.vocab_size = config.vocab_size
328
-
329
- self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
330
- self.layers = nn.ModuleList([DecoderLayer(config) for _ in range(config.num_hidden_layers)])
331
- self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
332
-
333
- self.gradient_checkpointing = False
334
- # Initialize weights and apply final processing
335
- self.post_init()
336
-
337
- def get_input_embeddings(self):
338
- return self.embed_tokens
339
-
340
- def set_input_embeddings(self, value):
341
- self.embed_tokens = value
342
-
343
- # Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
344
- def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
345
- # create causal mask
346
- # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
347
- combined_attention_mask = None
348
- if input_shape[-1] > 1:
349
- combined_attention_mask = _make_causal_mask(
350
- input_shape,
351
- inputs_embeds.dtype,
352
- device=inputs_embeds.device,
353
- past_key_values_length=past_key_values_length,
354
- )
355
-
356
- if attention_mask is not None:
357
- # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
358
- expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
359
- inputs_embeds.device
360
- )
361
- combined_attention_mask = (
362
- expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
363
- )
364
-
365
- return combined_attention_mask
366
-
367
- def forward(
368
- self,
369
- input_ids: torch.LongTensor = None,
370
- attention_mask: Optional[torch.Tensor] = None,
371
- position_ids: Optional[torch.LongTensor] = None,
372
- past_key_values: Optional[List[torch.FloatTensor]] = None,
373
- inputs_embeds: Optional[torch.FloatTensor] = None,
374
- use_cache: Optional[bool] = None,
375
- output_attentions: Optional[bool] = None,
376
- output_hidden_states: Optional[bool] = None,
377
- return_dict: Optional[bool] = None,
378
- ) -> Union[Tuple, BaseModelOutputWithPast]:
379
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
380
- output_hidden_states = (
381
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
382
- )
383
- use_cache = use_cache if use_cache is not None else self.config.use_cache
384
-
385
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
386
-
387
- # retrieve input_ids and inputs_embeds
388
- if input_ids is not None and inputs_embeds is not None:
389
- raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
390
- elif input_ids is not None:
391
- batch_size, seq_length = input_ids.shape
392
- elif inputs_embeds is not None:
393
- batch_size, seq_length, _ = inputs_embeds.shape
394
- else:
395
- raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
396
-
397
- seq_length_with_past = seq_length
398
- past_key_values_length = 0
399
-
400
- if past_key_values is not None:
401
- past_key_values_length = past_key_values[0][0].shape[2]
402
- seq_length_with_past = seq_length_with_past + past_key_values_length
403
-
404
- if position_ids is None:
405
- device = input_ids.device if input_ids is not None else inputs_embeds.device
406
- position_ids = torch.arange(
407
- past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
408
- )
409
- position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
410
- else:
411
- position_ids = position_ids.view(-1, seq_length).long()
412
-
413
- if inputs_embeds is None:
414
- inputs_embeds = self.embed_tokens(input_ids)
415
- # embed positions
416
- if attention_mask is None:
417
- attention_mask = torch.ones(
418
- (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
419
- )
420
- attention_mask = self._prepare_decoder_attention_mask(
421
- attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
422
- )
423
-
424
- hidden_states = inputs_embeds
425
-
426
- if self.gradient_checkpointing and self.training:
427
- if use_cache:
428
- logger.warning_once(
429
- "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
430
- )
431
- use_cache = False
432
-
433
- # decoder layers
434
- all_hidden_states = () if output_hidden_states else None
435
- all_self_attns = () if output_attentions else None
436
- next_decoder_cache = () if use_cache else None
437
-
438
- for idx, decoder_layer in enumerate(self.layers):
439
- if output_hidden_states:
440
- all_hidden_states += (hidden_states,)
441
-
442
- past_key_value = past_key_values[idx] if past_key_values is not None else None
443
-
444
- if self.gradient_checkpointing and self.training:
445
-
446
- def create_custom_forward(module):
447
- def custom_forward(*inputs):
448
- # None for past_key_value
449
- return module(*inputs, output_attentions, None)
450
-
451
- return custom_forward
452
-
453
- layer_outputs = torch.utils.checkpoint.checkpoint(
454
- create_custom_forward(decoder_layer),
455
- hidden_states,
456
- attention_mask,
457
- position_ids,
458
- None,
459
- )
460
- else:
461
- layer_outputs = decoder_layer(
462
- hidden_states,
463
- attention_mask=attention_mask,
464
- position_ids=position_ids,
465
- past_key_value=past_key_value,
466
- output_attentions=output_attentions,
467
- use_cache=use_cache,
468
- )
469
-
470
- hidden_states = layer_outputs[0]
471
-
472
- if use_cache:
473
- next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
474
-
475
- if output_attentions:
476
- all_self_attns += (layer_outputs[1],)
477
-
478
- hidden_states = self.norm(hidden_states)
479
-
480
- # add hidden states from the last decoder layer
481
- if output_hidden_states:
482
- all_hidden_states += (hidden_states,)
483
-
484
- next_cache = next_decoder_cache if use_cache else None
485
- if not return_dict:
486
- return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
487
- return BaseModelOutputWithPast(
488
- last_hidden_state=hidden_states,
489
- past_key_values=next_cache,
490
- hidden_states=all_hidden_states,
491
- attentions=all_self_attns,
492
- )
493
-
494
-
495
- class NormHead(nn.Module):
496
- def __init__(self, hidden_size, vocab_size, bias=False):
497
- super().__init__()
498
- self.weight = nn.Parameter(torch.empty((vocab_size, hidden_size)))
499
- nn.init.kaiming_uniform_(self.weight, a=math.sqrt(5))
500
- self.first_flag = True
501
-
502
- def forward(self, hidden_states):
503
- if self.training:
504
- norm_weight = nn.functional.normalize(self.weight)
505
- self.first_flag = True
506
- elif self.first_flag:
507
- self.first_flag = False
508
- self.weight = nn.Parameter(nn.functional.normalize(self.weight))
509
- norm_weight = self.weight
510
- else:
511
- norm_weight = self.weight
512
- return nn.functional.linear(hidden_states, norm_weight)
513
-
514
- _init_weights = True
515
- @contextmanager
516
- def no_init_weights(_enable=True):
517
- global _init_weights
518
- old_init_weights = _init_weights
519
- if _enable:
520
- _init_weights = False
521
- try:
522
- yield
523
- finally:
524
- _init_weights = old_init_weights
525
-
526
- class BaichuanForCausalLM(BaichuanPreTrainedModel):
527
- def __init__(self, config, *model_args, **model_kwargs):
528
- super().__init__(config, *model_args, **model_kwargs)
529
- self.model = BaichuanModel(config)
530
-
531
- self.lm_head = NormHead(config.hidden_size, config.vocab_size, bias=False)
532
- if hasattr(config, "quantization_config") and isinstance(config.quantization_config, dict) and config.quantization_config.get('load_in_4bit', False):
533
- try:
534
- from .quantizer import quantize_offline, init_model_weight_int4
535
- except ImportError:
536
- raise ImportError(f"Needs QLinear to run quantize.")
537
- quantize_offline(self, 4)
538
- # Initialize weights and apply final processing
539
- self.post_init()
540
-
541
- def get_input_embeddings(self):
542
- return self.model.embed_tokens
543
-
544
- def set_input_embeddings(self, value):
545
- self.model.embed_tokens = value
546
-
547
- def get_output_embeddings(self):
548
- return self.lm_head
549
-
550
- def set_output_embeddings(self, new_embeddings):
551
- self.lm_head = new_embeddings
552
-
553
- def set_decoder(self, decoder):
554
- self.model = decoder
555
-
556
- def get_decoder(self):
557
- return self.model
558
-
559
- @classmethod
560
- def from_pretrained(
561
- cls,
562
- pretrained_model_name_or_path: Optional[Union[str, os.PathLike]],
563
- *model_args,
564
- config: Optional[Union[PretrainedConfig, str, os.PathLike]] = None,
565
- cache_dir: Optional[Union[str, os.PathLike]] = None,
566
- ignore_mismatched_sizes: bool = False,
567
- force_download: bool = False,
568
- local_files_only: bool = False,
569
- token: Optional[Union[str, bool]] = None,
570
- revision: str = "main",
571
- use_safetensors: bool = None,
572
- **kwargs,
573
- ):
574
- # Load config if we don't provide a configuration
575
- if not isinstance(config, PretrainedConfig):
576
- config_path = config if config is not None else pretrained_model_name_or_path
577
- config, model_kwargs = cls.config_class.from_pretrained(
578
- config_path,
579
- cache_dir=cache_dir,
580
- return_unused_kwargs=True,
581
- force_download=force_download,
582
- resume_download=False,
583
- proxies=None,
584
- local_files_only=local_files_only,
585
- token=token,
586
- revision=revision,
587
- subfolder="",
588
- _from_auto=False,
589
- _from_pipeline=None,
590
- **kwargs,
591
- )
592
- else:
593
- model_kwargs = kwargs
594
-
595
- if hasattr(config, "quantization_config") and config.quantization_config['load_in_4bit']:
596
- try:
597
- from .quantizer import init_model_weight_int4
598
- from accelerate import init_empty_weights, dispatch_model, infer_auto_device_map
599
- from accelerate.utils import CustomDtype
600
- from accelerate.utils import get_balanced_memory
601
- except ImportError:
602
- raise ImportError(f"Needs import model weight init func to run quantize.")
603
- # Instantiate model.
604
- init_contexts = [no_init_weights(_enable=True)]
605
- init_contexts.append(init_empty_weights())
606
- with ContextManagers(init_contexts):
607
- model = cls(config)
608
-
609
- model_file = os.path.join(pretrained_model_name_or_path, 'pytorch_model.bin')
610
- state_dict = torch.load(model_file, map_location="cpu")
611
- model.is_quantized = True
612
-
613
- device_map = kwargs.pop("device_map", None)
614
- torch_dtype = kwargs.pop("torch_dtype", None)
615
-
616
- if device_map is not None:
617
- kwargs = {"no_split_module_classes": model._no_split_modules}
618
- target_dtype = CustomDtype.INT4
619
- max_memory = get_balanced_memory(
620
- model,
621
- dtype=target_dtype,
622
- low_zero=(device_map == "balanced_low_0"),
623
- max_memory=None,
624
- **kwargs,
625
- )
626
- kwargs["max_memory"] = max_memory
627
- device_map = infer_auto_device_map(model, dtype=target_dtype, **kwargs)
628
-
629
- model = init_model_weight_int4(config, model, state_dict)
630
-
631
- # Set model in evaluation mode to deactivate DropOut modules by default
632
- model.eval()
633
- # If it is a model with generation capabilities, attempt to load the generation config
634
- if model.can_generate():
635
- try:
636
- model.generation_config = GenerationConfig.from_pretrained(
637
- pretrained_model_name_or_path,
638
- cache_dir=cache_dir,
639
- force_download=force_download,
640
- resume_download=False,
641
- proxies=None,
642
- local_files_only=local_files_only,
643
- token=token,
644
- revision=revision,
645
- subfolder="",
646
- _from_auto=False,
647
- _from_pipeline=None,
648
- **kwargs,
649
- )
650
- except (OSError, TypeError):
651
- logger.info(
652
- "Generation config file not found, using a generation config created from the model config."
653
- )
654
- pass
655
-
656
- if device_map is not None:
657
- dispatch_model(model, device_map=device_map)
658
-
659
- return model
660
- return super(BaichuanForCausalLM, cls).from_pretrained(pretrained_model_name_or_path, *model_args,
661
- config=config, cache_dir=cache_dir, ignore_mismatched_sizes=ignore_mismatched_sizes,
662
- force_download=force_download, local_files_only=local_files_only, token=token, revision=revision,
663
- use_safetensors=use_safetensors, **kwargs)
664
-
665
- def forward(
666
- self,
667
- input_ids: torch.LongTensor = None,
668
- attention_mask: Optional[torch.Tensor] = None,
669
- position_ids: Optional[torch.LongTensor] = None,
670
- past_key_values: Optional[List[torch.FloatTensor]] = None,
671
- inputs_embeds: Optional[torch.FloatTensor] = None,
672
- labels: Optional[torch.LongTensor] = None,
673
- use_cache: Optional[bool] = None,
674
- output_attentions: Optional[bool] = None,
675
- output_hidden_states: Optional[bool] = None,
676
- return_dict: Optional[bool] = None,
677
- ) -> Union[Tuple, CausalLMOutputWithPast]:
678
-
679
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
680
- output_hidden_states = (
681
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
682
- )
683
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
684
-
685
- # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
686
- outputs = self.model(
687
- input_ids=input_ids,
688
- attention_mask=attention_mask,
689
- position_ids=position_ids,
690
- past_key_values=past_key_values,
691
- inputs_embeds=inputs_embeds,
692
- use_cache=use_cache,
693
- output_attentions=output_attentions,
694
- output_hidden_states=output_hidden_states,
695
- return_dict=return_dict,
696
- )
697
-
698
- hidden_states = outputs[0]
699
- logits = self.lm_head(hidden_states)
700
- loss = None
701
- if labels is not None:
702
- # Shift so that tokens < n predict n
703
- shift_logits = logits[..., :-1, :].contiguous()
704
- shift_labels = labels[..., 1:].contiguous()
705
- # Flatten the tokens
706
- loss_fct = CrossEntropyLoss()
707
- shift_logits = shift_logits.view(-1, self.config.vocab_size)
708
- shift_labels = shift_labels.view(-1)
709
- softmax_normalizer = shift_logits.max(-1).values ** 2
710
- z_loss = self.config.z_loss_weight * softmax_normalizer.mean()
711
- # Enable model parallelism
712
- shift_labels = shift_labels.to(shift_logits.device)
713
- loss = loss_fct(shift_logits, shift_labels) + z_loss
714
-
715
- if not return_dict:
716
- output = (logits,) + outputs[1:]
717
- return (loss,) + output if loss is not None else output
718
-
719
- return CausalLMOutputWithPast(
720
- loss=loss,
721
- logits=logits,
722
- past_key_values=outputs.past_key_values,
723
- hidden_states=outputs.hidden_states,
724
- attentions=outputs.attentions,
725
- )
726
-
727
- def prepare_inputs_for_generation(
728
- self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
729
- ):
730
- if past_key_values:
731
- input_ids = input_ids[:, -1:]
732
-
733
- position_ids = kwargs.get("position_ids", None)
734
- if attention_mask is not None and position_ids is None:
735
- # create position_ids on the fly for batch generation
736
- position_ids = attention_mask.long().cumsum(-1) - 1
737
- position_ids.masked_fill_(attention_mask == 0, 1)
738
- if past_key_values:
739
- position_ids = position_ids[:, -1].unsqueeze(-1)
740
-
741
- # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
742
- if inputs_embeds is not None and past_key_values is None:
743
- model_inputs = {"inputs_embeds": inputs_embeds}
744
- else:
745
- model_inputs = {"input_ids": input_ids}
746
-
747
- model_inputs.update(
748
- {
749
- "position_ids": position_ids,
750
- "past_key_values": past_key_values,
751
- "use_cache": kwargs.get("use_cache"),
752
- "attention_mask": attention_mask,
753
- }
754
- )
755
- return model_inputs
756
-
757
- @staticmethod
758
- def _reorder_cache(past_key_values, beam_idx):
759
- reordered_past = ()
760
- for layer_past in past_key_values:
761
- reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
762
- return reordered_past
763
-
764
- def quantize(self, bits: int):
765
- try:
766
- from .quantizer import quantize_online
767
- except ImportError:
768
- raise ImportError(f"Needs QLinear to run quantize.")
769
- return quantize_online(self, bits)
770
-
771
- def chat(self, tokenizer, messages: List[dict], stream=False,
772
- generation_config: Optional[GenerationConfig]=None):
773
- generation_config = generation_config or self.generation_config
774
- input_ids = build_chat_input(self, tokenizer, messages, generation_config.max_new_tokens)
775
- if stream:
776
- streamer = TextIterStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
777
- Thread(target=self.generate, kwargs=dict(
778
- inputs=input_ids, streamer=streamer,
779
- generation_config=generation_config,
780
- )).start()
781
- return streamer
782
- else:
783
- outputs = self.generate(input_ids, generation_config=generation_config)
784
- response = tokenizer.decode(outputs[0][len(input_ids[0]):], skip_special_tokens=True)
785
- return response
786
-
787
- def HuatuoChat(self, tokenizer, messages: List[dict], stream=False,
788
- generation_config: Optional[GenerationConfig]=None):
789
- generation_config = generation_config or self.generation_config
790
- input_ids = build_chat_input(self, tokenizer, messages, generation_config.max_new_tokens)
791
- if stream:
792
- streamer = TextIterStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
793
- Thread(target=self.generate, kwargs=dict(
794
- inputs=input_ids, streamer=streamer,
795
- generation_config=generation_config,
796
- )).start()
797
- return streamer
798
- else:
799
- outputs = self.generate(input_ids, generation_config=generation_config)
800
- response = tokenizer.decode(outputs[0][len(input_ids[0]):], skip_special_tokens=True)
801
- return response
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
modeling_baichuan.py CHANGED
@@ -706,6 +706,22 @@ class BaichuanForCausalLM(BaichuanPreTrainedModel):
706
  generation_config: Optional[GenerationConfig]=None):
707
  generation_config = generation_config or self.generation_config
708
  input_ids = build_chat_input(self, tokenizer, messages, generation_config.max_new_tokens)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
709
  if stream:
710
  streamer = TextIterStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
711
  Thread(target=self.generate, kwargs=dict(
 
706
  generation_config: Optional[GenerationConfig]=None):
707
  generation_config = generation_config or self.generation_config
708
  input_ids = build_chat_input(self, tokenizer, messages, generation_config.max_new_tokens)
709
+ if stream:
710
+ streamer = TextIterStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
711
+ Thread(target=self.generate, kwargs=dict(
712
+ inputs=input_ids, streamer=streamer,
713
+ generation_config=generation_config,
714
+ )).start()
715
+ return streamer
716
+ else:
717
+ outputs = self.generate(input_ids, generation_config=generation_config)
718
+ response = tokenizer.decode(outputs[0][len(input_ids[0]):], skip_special_tokens=True)
719
+ return response
720
+
721
+ def HuatuoChat(self, tokenizer, messages: List[dict], stream=False,
722
+ generation_config: Optional[GenerationConfig]=None):
723
+ generation_config = generation_config or self.generation_config
724
+ input_ids = build_chat_input(self, tokenizer, messages, generation_config.max_new_tokens)
725
  if stream:
726
  streamer = TextIterStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
727
  Thread(target=self.generate, kwargs=dict(