minpeter commited on
Commit
f03af84
Β·
verified Β·
1 Parent(s): c192653

diff for compatibility

Browse files
Files changed (2) hide show
  1. README.md +12 -244
  2. tokenizer_config.json +2 -1
README.md CHANGED
@@ -7,254 +7,22 @@ datasets:
7
  - lmms-lab/VideoChatGPT
8
  ---
9
 
10
- # LLaVA-NeXT-Video Model Card
 
 
 
 
11
 
12
- Check out also the Google Colab demo to run Llava on a free-tier Google Colab instance: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1CZggLHrjxMReG-FNOmqSOdi4z7NPq6SO?usp=sharing)
13
 
14
- Disclaimer: The team releasing LLaVa-NeXT-Video did not write a model card for this model so this model card has been written by the Hugging Face team.
15
 
16
- ## πŸ“„ Model details
 
17
 
18
- **Model type:**
19
- LLaVA-Next-Video is an open-source chatbot trained by fine-tuning LLM on multimodal instruction-following data. The model is buit on top of LLaVa-NeXT by tuning on a mix of video and image data to achieve better video understanding capabilities. The videos were sampled uniformly to be 32 frames per clip.
20
- The model is a current SOTA among open-source models on [VideoMME bench](https://arxiv.org/abs/2405.21075).
21
- Base LLM: [lmsys/vicuna-7b-v1.5](https://huggingface.co/lmsys/vicuna-13b-v1.5)
22
 
23
- ![llava_next_video_arch](demo.png)
24
 
 
25
 
26
- **Model date:**
27
- LLaVA-Next-Video-7B was trained in April 2024.
28
-
29
- **Paper or resources for more information:** https://github.com/LLaVA-VL/LLaVA-NeXT
30
-
31
-
32
- ## πŸ“š Training dataset
33
-
34
- ### Image
35
- - 558K filtered image-text pairs from LAION/CC/SBU, captioned by BLIP.
36
- - 158K GPT-generated multimodal instruction-following data.
37
- - 500K academic-task-oriented VQA data mixture.
38
- - 50K GPT-4V data mixture.
39
- - 40K ShareGPT data.
40
-
41
- ### Video
42
- - 100K VideoChatGPT-Instruct.
43
-
44
- ## πŸ“Š Evaluation dataset
45
- A collection of 4 benchmarks, including 3 academic VQA benchmarks and 1 captioning benchmark.
46
-
47
-
48
-
49
- ## πŸš€ How to use the model
50
-
51
- First, make sure to have `transformers >= 4.42.0`.
52
- The model supports multi-visual and multi-prompt generation. Meaning that you can pass multiple images/videos in your prompt. Make sure also to follow the correct prompt template (`USER: xxx\nASSISTANT:`) and add the token `<image>` or `<video>` to the location where you want to query images/videos:
53
-
54
- Below is an example script to run generation in `float16` precision on a GPU device:
55
-
56
- ```python
57
- import av
58
- import torch
59
- import numpy as np
60
- from huggingface_hub import hf_hub_download
61
- from transformers import LlavaNextVideoProcessor, LlavaNextVideoForConditionalGeneration
62
-
63
- model_id = "llava-hf/LLaVA-NeXT-Video-7B-hf"
64
-
65
- model = LlavaNextVideoForConditionalGeneration.from_pretrained(
66
- model_id,
67
- torch_dtype=torch.float16,
68
- low_cpu_mem_usage=True,
69
- ).to(0)
70
-
71
- processor = LlavaNextVideoProcessor.from_pretrained(model_id)
72
-
73
- def read_video_pyav(container, indices):
74
- '''
75
- Decode the video with PyAV decoder.
76
- Args:
77
- container (`av.container.input.InputContainer`): PyAV container.
78
- indices (`List[int]`): List of frame indices to decode.
79
- Returns:
80
- result (np.ndarray): np array of decoded frames of shape (num_frames, height, width, 3).
81
- '''
82
- frames = []
83
- container.seek(0)
84
- start_index = indices[0]
85
- end_index = indices[-1]
86
- for i, frame in enumerate(container.decode(video=0)):
87
- if i > end_index:
88
- break
89
- if i >= start_index and i in indices:
90
- frames.append(frame)
91
- return np.stack([x.to_ndarray(format="rgb24") for x in frames])
92
-
93
-
94
- # define a chat history and use `apply_chat_template` to get correctly formatted prompt
95
- # Each value in "content" has to be a list of dicts with types ("text", "image", "video")
96
- conversation = [
97
- {
98
-
99
- "role": "user",
100
- "content": [
101
- {"type": "text", "text": "Why is this video funny?"},
102
- {"type": "video"},
103
- ],
104
- },
105
- ]
106
-
107
- prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
108
-
109
- video_path = hf_hub_download(repo_id="raushan-testing-hf/videos-test", filename="sample_demo_1.mp4", repo_type="dataset")
110
- container = av.open(video_path)
111
-
112
- # sample uniformly 8 frames from the video, can sample more for longer videos
113
- total_frames = container.streams.video[0].frames
114
- indices = np.arange(0, total_frames, total_frames / 8).astype(int)
115
- clip = read_video_pyav(container, indices)
116
- inputs_video = processor(text=prompt, videos=clip, padding=True, return_tensors="pt").to(model.device)
117
-
118
- output = model.generate(**inputs_video, max_new_tokens=100, do_sample=False)
119
- print(processor.decode(output[0][2:], skip_special_tokens=True))
120
- ```
121
-
122
- -----------
123
- From transformers>=v4.48, you can also pass image/video url or local path to the conversation history, and let the chat template handle the rest.
124
- For video you also need to indicate how many `num_frames` to sample from video, otherwise the whole video will be loaded.
125
- Chat template will load the image/video for you and return inputs in `torch.Tensor` which you can pass directly to `model.generate()`.
126
-
127
- ```python
128
- messages = [
129
- {
130
- "role": "user",
131
- "content": [
132
- {"type": "image", "url": "https://www.ilankelman.org/stopsigns/australia.jpg"}
133
- {"type": "video", "path": "my_video.mp4"},
134
- {"type": "text", "text": "What is shown in this image and video?"},
135
- ],
136
- },
137
- ]
138
-
139
- inputs = processor.apply_chat_template(messages, num_frames=8, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors"pt")
140
- output = model.generate(**inputs, max_new_tokens=50)
141
- ```
142
-
143
-
144
- ### Inference with images as inputs
145
-
146
- To generate from images use the below code after loading the model as shown above:
147
-
148
- ```python
149
- import requests
150
- from PIL import Image
151
-
152
- conversation = [
153
- {
154
- "role": "user",
155
- "content": [
156
- {"type": "text", "text": "What are these?"},
157
- {"type": "image"},
158
- ],
159
- },
160
- ]
161
- prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
162
-
163
- image_file = "http://images.cocodataset.org/val2017/000000039769.jpg"
164
- raw_image = Image.open(requests.get(image_file, stream=True).raw)
165
- inputs_image = processor(text=prompt, images=raw_image, return_tensors='pt').to(0, torch.float16)
166
-
167
- output = model.generate(**inputs_video, max_new_tokens=100, do_sample=False)
168
- print(processor.decode(output[0][2:], skip_special_tokens=True))
169
- ```
170
-
171
- ### Inference with images and videos as inputs
172
-
173
- To generate from images and videos in one generate use the below code after loading the model as shown above:
174
-
175
- ```python
176
- conversation_1 = [
177
- {
178
- "role": "user",
179
- "content": [
180
- {"type": "text", "text": "What's the content of the image>"},
181
- {"type": "image"},
182
- ],
183
- }
184
- ]
185
- conversation_2 = [
186
- {
187
- "role": "user",
188
- "content": [
189
- {"type": "text", "text": "Why is this video funny?"},
190
- {"type": "video"},
191
- ],
192
- },
193
- ]
194
- prompt_1 = processor.apply_chat_template(conversation_1, add_generation_prompt=True)
195
- prompt_2 = processor.apply_chat_template(conversation_2, add_generation_prompt=True)
196
-
197
- s = processor(text=[prompt_1, prompt_2], images=image, videos=clip, padding=True, return_tensors="pt").to(model.device)
198
-
199
- # Generate
200
- generate_ids = model.generate(**inputs, max_new_tokens=100)
201
- out = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)
202
- print(out)
203
- ```
204
-
205
- ### Model optimization
206
-
207
- #### 4-bit quantization through `bitsandbytes` library
208
-
209
- First make sure to install `bitsandbytes`, `pip install bitsandbytes` and make sure to have access to a CUDA compatible GPU device. Simply change the snippet above with:
210
-
211
- ```diff
212
- model = LlavaNextVideoForConditionalGeneration.from_pretrained(
213
- model_id,
214
- torch_dtype=torch.float16,
215
- low_cpu_mem_usage=True,
216
- + load_in_4bit=True
217
- )
218
- ```
219
-
220
- #### Use Flash-Attention 2 to further speed-up generation
221
-
222
- First make sure to install `flash-attn`. Refer to the [original repository of Flash Attention](https://github.com/Dao-AILab/flash-attention) regarding that package installation. Simply change the snippet above with:
223
-
224
- ```diff
225
- model = LlavaNextVideoForConditionalGeneration.from_pretrained(
226
- model_id,
227
- torch_dtype=torch.float16,
228
- low_cpu_mem_usage=True,
229
- + use_flash_attention_2=True
230
- ).to(0)
231
- ```
232
-
233
-
234
- ## πŸ”’ License
235
- Llama 2 is licensed under the LLAMA 2 Community License,
236
- Copyright (c) Meta Platforms, Inc. All Rights Reserved.
237
-
238
-
239
- ## ✏️ Citation
240
- If you find our paper and code useful in your research:
241
-
242
- ```BibTeX
243
- @misc{zhang2024llavanextvideo,
244
- title={LLaVA-NeXT: A Strong Zero-shot Video Understanding Model},
245
- url={https://llava-vl.github.io/blog/2024-04-30-llava-next-video/},
246
- author={Zhang, Yuanhan and Li, Bo and Liu, haotian and Lee, Yong jae and Gui, Liangke and Fu, Di and Feng, Jiashi and Liu, Ziwei and Li, Chunyuan},
247
- month={April},
248
- year={2024}
249
- }
250
- ```
251
-
252
- ```BibTeX
253
- @misc{liu2024llavanext,
254
- title={LLaVA-NeXT: Improved reasoning, OCR, and world knowledge},
255
- url={https://llava-vl.github.io/blog/2024-01-30-llava-next/},
256
- author={Liu, Haotian and Li, Chunyuan and Li, Yuheng and Li, Bo and Zhang, Yuanhan and Shen, Sheng and Lee, Yong Jae},
257
- month={January},
258
- year={2024}
259
- }
260
- ```
 
7
  - lmms-lab/VideoChatGPT
8
  ---
9
 
10
+ <!-- header start -->
11
+ <p align="center">
12
+ <img src="https://huggingface.co/datasets/FriendliAI/documentation-images/resolve/main/model-card-assets/friendliai.png" width="100%" alt="FriendliAI Logo">
13
+ </p>
14
+ <!-- header end -->
15
 
 
16
 
17
+ # llava-hf/LLaVA-NeXT-Video-7B-hf
18
 
19
+ * Model creator: [llava-hf](https://huggingface.co/llava-hf)
20
+ * Original model: [LLaVA-NeXT-Video-7B-hf](https://huggingface.co/llava-hf/LLaVA-NeXT-Video-7B-hf)
21
 
22
+ ## Differences
 
 
 
23
 
24
+ * Added missing chat template to tokenizer_config.json
25
 
26
+ ## License
27
 
28
+ Refer to the license of the original model card.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
tokenizer_config.json CHANGED
@@ -45,6 +45,7 @@
45
  }
46
  },
47
  "bos_token": "<s>",
 
48
  "clean_up_tokenization_spaces": false,
49
  "eos_token": "</s>",
50
  "extra_special_tokens": {
@@ -63,4 +64,4 @@
63
  "unk_token": "<unk>",
64
  "use_default_system_prompt": false,
65
  "video_token": "<video>"
66
- }
 
45
  }
46
  },
47
  "bos_token": "<s>",
48
+ "chat_template": "{% for message in messages %}{% if message['role'] != 'system' %}{{ message['role'].upper() + ': '}}{% endif %}{# Render all images first #}{% for content in message['content'] | selectattr('type', 'equalto', 'image') %}{{ '<image>\n' }}{% endfor %}{# Render all images first #}{% for content in message['content'] | selectattr('type', 'equalto', 'video') %}{{ '<video>\n' }}{% endfor %}{# Render all text next #}{% if message['role'] != 'assistant' %}{% for content in message['content'] | selectattr('type', 'equalto', 'text') %}{{ content['text'] + ' '}}{% endfor %}{% else %}{% for content in message['content'] | selectattr('type', 'equalto', 'text') %}{% generation %}{{ content['text'] + ' '}}{% endgeneration %}{% endfor %}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ 'ASSISTANT:' }}{% endif %}",
49
  "clean_up_tokenization_spaces": false,
50
  "eos_token": "</s>",
51
  "extra_special_tokens": {
 
64
  "unk_token": "<unk>",
65
  "use_default_system_prompt": false,
66
  "video_token": "<video>"
67
+ }