File size: 2,039 Bytes
9f60efa
 
 
471080f
9f60efa
 
 
 
471080f
 
9f60efa
 
 
 
 
 
 
 
 
 
471080f
9f60efa
471080f
 
 
 
 
9f60efa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
471080f
9f60efa
 
 
471080f
9f60efa
471080f
9f60efa
 
 
 
471080f
 
 
 
 
 
9f60efa
 
 
 
471080f
 
9f60efa
471080f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
library_name: transformers
license: apache-2.0
base_model: google-bert/bert-base-multilingual-cased
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
model-index:
- name: bert-base-multilingual-cased-mar
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bert-base-multilingual-cased-mar

This model is a fine-tuned version of [google-bert/bert-base-multilingual-cased](https://huggingface.co/google-bert/bert-base-multilingual-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0918
- Accuracy: 0.7654
- F1 Binary: 0.5231
- Precision: 0.3806
- Recall: 0.8363

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 64
- eval_batch_size: 16
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 36
- num_epochs: 4

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Binary | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:---------:|:------:|
| No log        | 1.0   | 182  | 0.1805          | 0.1539   | 0.2667    | 0.1539    | 1.0    |
| No log        | 2.0   | 364  | 0.1289          | 0.4496   | 0.3417    | 0.2094    | 0.9283 |
| 0.1552        | 3.0   | 546  | 0.1471          | 0.7143   | 0.4282    | 0.3094    | 0.6951 |
| 0.1552        | 4.0   | 728  | 0.0918          | 0.7654   | 0.5231    | 0.3806    | 0.8363 |


### Framework versions

- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0