--- library_name: transformers license: apache-2.0 base_model: google-bert/bert-base-multilingual-cased tags: - generated_from_trainer metrics: - accuracy - precision - recall model-index: - name: bert-base-multilingual-cased-ron results: [] --- # bert-base-multilingual-cased-ron This model is a fine-tuned version of [google-bert/bert-base-multilingual-cased](https://huggingface.co/google-bert/bert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0552 - Accuracy: 0.8696 - F1 Binary: 0.8054 - Precision: 0.7226 - Recall: 0.9096 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 64 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 37 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Binary | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:---------:|:------:| | No log | 1.0 | 187 | 0.0957 | 0.7502 | 0.6166 | 0.5662 | 0.6768 | | No log | 2.0 | 374 | 0.0623 | 0.7787 | 0.7014 | 0.5849 | 0.8757 | | 0.0661 | 3.0 | 561 | 0.0603 | 0.8414 | 0.7736 | 0.6711 | 0.9130 | | 0.0661 | 4.0 | 748 | 0.0552 | 0.8696 | 0.8054 | 0.7226 | 0.9096 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0