File size: 3,980 Bytes
0fd1f3d
 
 
 
 
 
 
 
 
 
 
65b4e99
0fd1f3d
 
 
 
 
 
65b4e99
0fd1f3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65b4e99
0fd1f3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65b4e99
0fd1f3d
65b4e99
 
 
 
 
 
 
 
 
 
 
 
0fd1f3d
65b4e99
 
 
0fd1f3d
 
 
 
 
 
 
 
 
 
 
65b4e99
0fd1f3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65b4e99
0fd1f3d
65b4e99
0fd1f3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65b4e99
0fd1f3d
65b4e99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0fd1f3d
65b4e99
 
 
 
 
 
 
 
 
0fd1f3d
65b4e99
0fd1f3d
 
 
 
 
65b4e99
0fd1f3d
 
 
 
 
 
 
 
 
 
 
 
 
65b4e99
0fd1f3d
 
 
 
65b4e99
0fd1f3d
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Install Dependencies"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "zsh:1: command not found: pip\n"
     ]
    }
   ],
   "source": [
    "!pip install -U --user transformers torch torchvision"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Import Dependencies"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "from transformers import AutoTokenizer, AutoModelForCausalLM\n",
    "import os"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Load from Local"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "'/Users/deanmartin/Source/gpt-neo-1.3B-fiction-novel-generation'"
      ]
     },
     "execution_count": 3,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "root_dir = '/'.join(os.getcwd().split('/')[:-1])\n",
    "\n",
    "root_dir"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Tokenizer"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [],
   "source": [
    "tokenizer = AutoTokenizer.from_pretrained(root_dir)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Model"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [],
   "source": [
    "model = AutoModelForCausalLM.from_pretrained(root_dir)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Inference Example"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Model Usage"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "The attention mask and the pad token id were not set. As a consequence, you may observe unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results.\n",
      "Setting `pad_token_id` to `eos_token_id`:50256 for open-end generation.\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "My name is John Doe, and I'm part of the New York State Attorney General's office.\n",
      "\n",
      "I'm not your \"typical\" defendant. I have no jury, no judge, no jury pool, no prosecutor-counsel, no courtroom.\n",
      "\n",
      "I don't even have my own cell phone with my inmate phone number. I live in the Bronx, Queens, Manhattan and New Jersey.\n",
      "\n",
      "And, I can't sleep because there's been a bomb threat,\n"
     ]
    }
   ],
   "source": [
    "prompt = 'My name is John Doe'\n",
    "input_ids = tokenizer(prompt, return_tensors='pt').input_ids\n",
    "generated_tokens = model.generate(\n",
    "    input_ids,\n",
    "    do_sample=True,\n",
    "    temperature=0.9,\n",
    "    max_length=100\n",
    ")\n",
    "generated_text = tokenizer.batch_decode(generated_tokens)[0]\n",
    "\n",
    "print(generated_text)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3.9.13 ('pytorch')",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.13"
  },
  "orig_nbformat": 4,
  "vscode": {
   "interpreter": {
    "hash": "0203f9377e450cf3e5fd498dcfe93bad69687b6515d650e7d79a42aa53323e2d"
   }
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}