File size: 4,750 Bytes
ccf8da6
 
 
 
 
 
34445e4
 
91817c7
ccf8da6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c1ff62
ccf8da6
 
 
34445e4
ccf8da6
 
 
 
 
91817c7
ccf8da6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
facaff0
ccf8da6
e9a7954
ccf8da6
5d56c2d
ccf8da6
 
5d56c2d
ccf8da6
 
 
 
5d56c2d
ccf8da6
43d2dd2
ccf8da6
 
 
32aca2e
 
6029fcd
ccf8da6
 
 
2b67305
 
 
 
 
ccf8da6
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
---
language:
- code
- en
task_categories:
- text-classification
tags:
- arxiv:2305.06156
license: mit
metrics:
- accuracy
widget:
- text: |-
    Sum two integers</s></s>def sum(a, b):
        return a + b
  example_title: Simple toy
- text: |-
    Look for methods that might be dynamically defined and define them for lookup.</s></s>def respond_to_missing?(name, include_private = false)
      if name == :to_ary || name == :empty?
        false
      else
        return true if mapping(name).present?
        mounting = all_mountings.find{ |mount| mount.respond_to?(name) }
        return false if mounting.nil?
      end
    end
  example_title: Ruby example
- text: |-
    Method that adds a candidate to the party @param c the candidate that will be added to the party</s></s>public void addCandidate(Candidate c)
    {
        this.votes += c.getVotes(); 
        candidates.add(c); 
    }
  example_title: Java example
- text: |-
    we do not need Buffer pollyfill for now</s></s>function(str){
      var ret = new Array(str.length), len = str.length;
      while(len--) ret[len] = str.charCodeAt(len);
      return Uint8Array.from(ret);
    }
  example_title: JavaScript example
  
pipeline_tag: text-classification
---



## Table of Contents
- [Model Description](#model-description)
- [Model Details](#model-details)
- [Usage](#usage)
- [Limitations](#limitations)
- [Additional Information](#additional-information)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)


## Model Description

This model is developed based on [Codebert](https://github.com/microsoft/CodeBERT) and a 5M subset of [The Vault](https://huggingface.co/datasets/Fsoft-AIC/thevault-function-level) to detect the inconsistency between docstring/comment and function. It is used to remove noisy examples in The Vault dataset.

More information:
- **Repository:** [FSoft-AI4Code/TheVault](https://github.com/FSoft-AI4Code/TheVault)
- **Paper:** [The Vault: A Comprehensive Multilingual Dataset for Advancing Code Understanding and Generation](https://arxiv.org/abs/2305.06156)
- **Contact:** [email protected]


## Model Details
* Developed by: [Fsoft AI Center](https://www.fpt-aicenter.com/ai-residency/)
* License: MIT
* Model type: Transformer-Encoder based Language Model
* Architecture: BERT-base
* Data set: [The Vault](https://huggingface.co/datasets/Fsoft-AIC/thevault-function-level)
* Tokenizer: Byte Pair Encoding
* Vocabulary Size: 50265
* Sequence Length: 512
* Language: English and 10 Programming languages (Python, Java, JavaScript, PHP, C#, C, C++, Go, Rust, Ruby)
* Training details:
  * Self-supervised learning, binary classification
  * Positive class: Original code-docstring pair
  * Negative class: Random pairing code and docstring

## Usage
The input to the model follows the below template:
```python
"""
Template:
<s>{docstring}</s></s>{code}</s>

Example:
from transformers import AutoTokenizer

#Load tokenizer
tokenizer = AutoTokenizer.from_pretrained("Fsoft-AIC/Codebert-docstring-inconsistency")

input = "<s>Sum two integers</s></s>def sum(a, b):\n    return a + b</s>"
tokenized_input = tokenizer(input, add_special_tokens= False)
"""
```

Using model with Jax and Pytorch
```python
from transformers import AutoTokenizer, AutoModelForSequenceClassification, FlaxAutoModelForSequenceClassification

#Load model with jax
model = FlaxAutoModelForSequenceClassification.from_pretrained("Fsoft-AIC/Codebert-docstring-inconsistency")

#Load model with torch
model = AutoModelForSequenceClassification.from_pretrained("Fsoft-AIC/Codebert-docstring-inconsistency")
```

## Limitations
This model is trained on 5M subset of The Vault in a self-supervised manner. Since the negative samples are generated artificially, the model's ability to identify instances that require a strong semantic understanding between the code and the docstring might be restricted.

It is hard to evaluate the model due to the unavailable labeled datasets. GPT-3.5-turbo is adopted as a reference to measure the correlation between the model and GPT-3.5-turbo's scores. However, the result could be influenced by GPT-3.5-turbo's potential biases and ambiguous conditions. Therefore, we recommend having human labeling dataset and fine-tune this model to achieve the best result.

## Additional information
### Licensing Information

MIT License

### Citation Information

```
@article{manh2023vault,
  title={The Vault: A Comprehensive Multilingual Dataset for Advancing Code Understanding and Generation},
  author={Manh, Dung Nguyen and Hai, Nam Le and Dau, Anh TV and Nguyen, Anh Minh and Nghiem, Khanh and Guo, Jin and Bui, Nghi DQ},
  journal={arXiv preprint arXiv:2305.06156},
  year={2023}
}
```