--- base_model: openai/whisper-large-v3 library_name: transformers license: apache-2.0 metrics: - wer tags: - generated_from_trainer model-index: - name: whisper-large-v3-Cantonese-fine-tune-bible-100 results: [] --- # whisper-large-v3-Cantonese-fine-tune-bible-100 This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2279 - Wer: 93.1034 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 5 - training_steps: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.0103 | 7.6923 | 100 | 0.2279 | 93.1034 | ### Framework versions - Transformers 4.46.0.dev0 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.0