RudranshAgnihotri commited on
Commit
38d686d
·
1 Parent(s): 5df633a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +35 -72
README.md CHANGED
@@ -16,76 +16,39 @@ The adapter has been trained using the Amazon Sentiment Review dataset, which in
16
 
17
  The Amazon Sentiment Review dataset was chosen for its size and its realistic representation of customer feedback. It serves as an excellent basis for training models to perform sentiment analysis in real-world scenarios.
18
 
19
- model-index:
20
- - name: LLAMA 7B Sentiment Analysis Adapter
21
- results:
22
- - task:
23
- name: Sentiment Analysis
24
- type: text-classification
25
- dataset:
26
- name: Amazon Sentiment Review dataset
27
- type: amazon_reviews
28
- model-metadata:
29
- license: apache-2.0
30
- library_name: transformers
31
- tags: ["text-classification", "sentiment-analysis", "English"]
32
- languages: ["en"]
33
- widget:
34
- - text: "I love using FuturixAI for my daily tasks!"
35
-
36
- intended-use:
37
- primary-uses:
38
- - This model is intended for sentiment analysis on English language text.
39
- primary-users:
40
- - Researchers
41
- - Social media monitoring tools
42
- - Customer feedback analysis systems
43
-
44
- training-data:
45
- training-data-source: Amazon Sentiment Review dataset
46
-
47
- quantitative-analyses:
48
- use-cases-limitations:
49
- - The model may perform poorly on texts that contain a lot of slang or are in a different language than it was trained on.
50
-
51
- ethical-considerations:
52
- risks-and-mitigations:
53
- - There is a risk of the model reinforcing or creating biases based on the training data. Users should be aware of this and consider additional bias mitigation strategies when using the model.
54
-
55
- model-architecture:
56
- architecture: LLAMA 7B with LORA adaptation
57
- library: PeftModel
58
-
59
- how-to-use:
60
- installation:
61
- - pip install transformers peft
62
- code-examples:
63
- - |
64
- ```python
65
- import transformers
66
- from peft import PeftModel
67
- model_name = "meta-llama/Llama-2-7b" # you can use VICUNA 7B model as well
68
- peft_model_id = "Futurix-AI/LLAMA_7B_Sentiment_Analysis_Amazon_Review_Dataset"
69
-
70
- tokenizer_t5 = transformers.AutoTokenizer.from_pretrained(model_name)
71
- model_t5 = transformers.AutoModelForCausalLM.from_pretrained(model_name)
72
- model_t5 = PeftModel.from_pretrained(model_t5, peft_model_id)
73
-
74
- prompt = """
75
- Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
76
- ###Instruction:
77
- Detect the sentiment of the tweet.
78
- ###Input:
79
- FuturixAI embodies the spirit of innovation, with a resolve to push the boundaries of what's possible through science and technology.
80
- ###Response:
81
- """
82
-
83
- inputs = tokenizer_t5(prompt, return_tensors="pt")
84
- for k, v in inputs.items():
85
- inputs[k] = v
86
- outputs = model_t5.generate(**inputs, max_length=256, do_sample=True)
87
- text = tokenizer_t5.batch_decode(outputs, skip_special_tokens=True)[0]
88
- print(text)
89
- ```
90
-
91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
 
17
  The Amazon Sentiment Review dataset was chosen for its size and its realistic representation of customer feedback. It serves as an excellent basis for training models to perform sentiment analysis in real-world scenarios.
18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
 
20
+ ```python
21
+ import transformers
22
+ from peft import PeftModel
23
+
24
+ # Model and tokenizer names
25
+ model_name = "lmsys/vicuna-7b-v1.5"
26
+ peft_model_id = "rudransh2004/FuturixAI-AmazonSentiment-LLAMA7B-LORA"
27
+
28
+ # Initialize the tokenizer and model
29
+ tokenizer_t5 = transformers.AutoTokenizer.from_pretrained(model_name)
30
+ model_t5 = transformers.AutoModelForCausalLM.from_pretrained(model_name)
31
+ model_t5 = PeftModel.from_pretrained(model_t5, peft_model_id)
32
+
33
+ # Prompt for sentiment detection
34
+ prompt = """
35
+ Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
36
+ ###Instruction:
37
+ Detect the sentiment of the tweet.
38
+ ###Input:
39
+ FuturixAI embodies the spirit of innovation, with a resolve to push the boundaries of what's possible through science and technology.
40
+ ###Response:
41
+
42
+ """
43
+
44
+ # Tokenize the prompt and prepare inputs
45
+ inputs = tokenizer_t5(prompt, return_tensors="pt")
46
+ for k, v in inputs.items():
47
+ inputs[k] = v
48
+
49
+ # Generate a response using the model
50
+ outputs = model_t5.generate(**inputs, max_length=256, do_sample=True)
51
+
52
+ # Decode and print the response
53
+ text = tokenizer_t5.batch_decode(outputs, skip_special_tokens=True)[0]
54
+ print(text)