RudranshAgnihotri
commited on
Commit
•
e92d4e6
1
Parent(s):
fb16342
Create mode_card.yaml
Browse files- mode_card.yaml +72 -0
mode_card.yaml
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model-index:
|
2 |
+
- name: LLAMA 7B Sentiment Analysis Adapter
|
3 |
+
results:
|
4 |
+
- task:
|
5 |
+
name: Sentiment Analysis
|
6 |
+
type: text-classification
|
7 |
+
dataset:
|
8 |
+
name: Amazon Sentiment Review dataset
|
9 |
+
type: amazon_reviews
|
10 |
+
model-metadata:
|
11 |
+
license: apache-2.0
|
12 |
+
library_name: transformers
|
13 |
+
tags: ["text-classification", "sentiment-analysis", "English"]
|
14 |
+
languages: ["en"]
|
15 |
+
widget:
|
16 |
+
- text: "I love using FuturixAI for my daily tasks!"
|
17 |
+
|
18 |
+
intended-use:
|
19 |
+
primary-uses:
|
20 |
+
- This model is intended for sentiment analysis on English language text.
|
21 |
+
primary-users:
|
22 |
+
- Researchers
|
23 |
+
- Social media monitoring tools
|
24 |
+
- Customer feedback analysis systems
|
25 |
+
|
26 |
+
training-data:
|
27 |
+
training-data-source: Amazon Sentiment Review dataset
|
28 |
+
|
29 |
+
quantitative-analyses:
|
30 |
+
use-cases-limitations:
|
31 |
+
- The model may perform poorly on texts that contain a lot of slang or are in a different language than it was trained on.
|
32 |
+
|
33 |
+
ethical-considerations:
|
34 |
+
risks-and-mitigations:
|
35 |
+
- There is a risk of the model reinforcing or creating biases based on the training data. Users should be aware of this and consider additional bias mitigation strategies when using the model.
|
36 |
+
|
37 |
+
model-architecture:
|
38 |
+
architecture: LLAMA 7B with LORA adaptation
|
39 |
+
library: PeftModel
|
40 |
+
|
41 |
+
how-to-use:
|
42 |
+
installation:
|
43 |
+
- pip install transformers peft
|
44 |
+
code-examples:
|
45 |
+
- |
|
46 |
+
```python
|
47 |
+
import transformers
|
48 |
+
from peft import PeftModel
|
49 |
+
|
50 |
+
model_name = "meta-llama/Llama-2-7b" # you can use VICUNA 7B model as well
|
51 |
+
peft_model_id = "Futurix-AI/LLAMA_7B_Sentiment_Analysis_Amazon_Review_Dataset"
|
52 |
+
|
53 |
+
tokenizer_t5 = transformers.AutoTokenizer.from_pretrained(model_name)
|
54 |
+
model_t5 = transformers.AutoModelForCausalLM.from_pretrained(model_name)
|
55 |
+
model_t5 = PeftModel.from_pretrained(model_t5, peft_model_id)
|
56 |
+
|
57 |
+
prompt = """
|
58 |
+
Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
|
59 |
+
###Instruction:
|
60 |
+
Detect the sentiment of the tweet.
|
61 |
+
###Input:
|
62 |
+
FuturixAI embodies the spirit of innovation, with a resolve to push the boundaries of what's possible through science and technology.
|
63 |
+
###Response:
|
64 |
+
"""
|
65 |
+
|
66 |
+
inputs = tokenizer_t5(prompt, return_tensors="pt")
|
67 |
+
for k, v in inputs.items():
|
68 |
+
inputs[k] = v
|
69 |
+
outputs = model_t5.generate(**inputs, max_length=256, do_sample=True)
|
70 |
+
text = tokenizer_t5.batch_decode(outputs, skip_special_tokens=True)[0]
|
71 |
+
print(text)
|
72 |
+
```
|