RudranshAgnihotri commited on
Commit
e92d4e6
1 Parent(s): fb16342

Create mode_card.yaml

Browse files
Files changed (1) hide show
  1. mode_card.yaml +72 -0
mode_card.yaml ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model-index:
2
+ - name: LLAMA 7B Sentiment Analysis Adapter
3
+ results:
4
+ - task:
5
+ name: Sentiment Analysis
6
+ type: text-classification
7
+ dataset:
8
+ name: Amazon Sentiment Review dataset
9
+ type: amazon_reviews
10
+ model-metadata:
11
+ license: apache-2.0
12
+ library_name: transformers
13
+ tags: ["text-classification", "sentiment-analysis", "English"]
14
+ languages: ["en"]
15
+ widget:
16
+ - text: "I love using FuturixAI for my daily tasks!"
17
+
18
+ intended-use:
19
+ primary-uses:
20
+ - This model is intended for sentiment analysis on English language text.
21
+ primary-users:
22
+ - Researchers
23
+ - Social media monitoring tools
24
+ - Customer feedback analysis systems
25
+
26
+ training-data:
27
+ training-data-source: Amazon Sentiment Review dataset
28
+
29
+ quantitative-analyses:
30
+ use-cases-limitations:
31
+ - The model may perform poorly on texts that contain a lot of slang or are in a different language than it was trained on.
32
+
33
+ ethical-considerations:
34
+ risks-and-mitigations:
35
+ - There is a risk of the model reinforcing or creating biases based on the training data. Users should be aware of this and consider additional bias mitigation strategies when using the model.
36
+
37
+ model-architecture:
38
+ architecture: LLAMA 7B with LORA adaptation
39
+ library: PeftModel
40
+
41
+ how-to-use:
42
+ installation:
43
+ - pip install transformers peft
44
+ code-examples:
45
+ - |
46
+ ```python
47
+ import transformers
48
+ from peft import PeftModel
49
+
50
+ model_name = "meta-llama/Llama-2-7b" # you can use VICUNA 7B model as well
51
+ peft_model_id = "Futurix-AI/LLAMA_7B_Sentiment_Analysis_Amazon_Review_Dataset"
52
+
53
+ tokenizer_t5 = transformers.AutoTokenizer.from_pretrained(model_name)
54
+ model_t5 = transformers.AutoModelForCausalLM.from_pretrained(model_name)
55
+ model_t5 = PeftModel.from_pretrained(model_t5, peft_model_id)
56
+
57
+ prompt = """
58
+ Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
59
+ ###Instruction:
60
+ Detect the sentiment of the tweet.
61
+ ###Input:
62
+ FuturixAI embodies the spirit of innovation, with a resolve to push the boundaries of what's possible through science and technology.
63
+ ###Response:
64
+ """
65
+
66
+ inputs = tokenizer_t5(prompt, return_tensors="pt")
67
+ for k, v in inputs.items():
68
+ inputs[k] = v
69
+ outputs = model_t5.generate(**inputs, max_length=256, do_sample=True)
70
+ text = tokenizer_t5.batch_decode(outputs, skip_special_tokens=True)[0]
71
+ print(text)
72
+ ```