ppo-LunarLander-v2 / config.json
Fuyuxiang123's picture
Upload PPO LunarLander-v2 trained agent
3e304d9
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f63005b7c70>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f63005b7d00>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f63005b7d90>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f63005b7e20>", "_build": "<function ActorCriticPolicy._build at 0x7f63005b7eb0>", "forward": "<function ActorCriticPolicy.forward at 0x7f63005b7f40>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f63005bc040>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f63005bc0d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f63005bc160>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f63005bc1f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f63005bc280>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f63005bc310>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f63005b2a80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1688454798533653475, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIMAgD6FD2U+csRUvUM4SL7KaJg8N7+kvQAAAAAAAAAAGo1+PkG6sT6tQCW+Al8Xvm5FLDwMBRM9AAAAAAAAAAAAAYQ85NQLP7L9I73rt6W+9hS7O9c/yrwAAAAAAAAAAKblhb0UIMC6Jj/BO1uFFDx0QTC8lucGPQAAgD8AAIA/s7+aPY8ScLz+ZYW8MHDIO0UJ2T3V+aG8AACAPwAAgD9AJOc9G8aWPl0I8b2C7jG+UGqWvaoGlj0AAAAAAAAAAIDVNT0B5qM/oSeEPrIJk74EUHA9ZVUYPgAAAAAAAAAATfBZvTdt/T4F7I49bfKIvlRgzDySq4M8AAAAAAAAAAB6Hx8+7Nu/u9aAMThQZaq1x8kYvW1tVLcAAIA/AACAPzOo3r2abaU/qfAyvmqE5b5PLEC+viYJvgAAAAAAAAAApofMvY9eWro4pNI6gPIENlbLzjpV2/S5AACAPwAAAACa5OC9yN6QPoIOmjz0A3m+0SwTvZpU8LwAAAAAAAAAAGYkQLwUsIq6MqwqszIJaC77Vh06GE7OMwAAgD8AAIA/MzyjveqrQT+u0bs9fkSSvrajN7029Rg+AAAAAAAAAADNbOK9rm+GuqiC+LfeYwaxcwccu6sKDzcAAIA/AAAAADNXoTuFKnQ/LAezPOfHjb7KyPO8suLhuwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHDlSgGr0auMAWyUTUwBjAF0lEdAknEK0tyxRnV9lChoBkdAcru8UVSGamgHTQQBaAhHQJJxNtqHoHN1fZQoaAZHQGskzEaVD8doB01mAWgIR0CScY/jbSJCdX2UKGgGR0BkMb5KvmozaAdN6ANoCEdAknOQZKnNxHV9lChoBkdAR1D/n4fwJGgHS/toCEdAknO9q+JxenV9lChoBkdAcA5eAuqWC2gHTWEBaAhHQJJ0D3Zf2K51fZQoaAZHQHF6CAtnPE9oB00OAWgIR0CSdyC2c8T0dX2UKGgGR0Brv+xMWXTmaAdNUwFoCEdAknghdMTN+3V9lChoBkdAcj89B8hLXmgHS/1oCEdAknk0QwsXi3V9lChoBkdAcRnxsEaESWgHTWcBaAhHQJJ6Ro+Ofd11fZQoaAZHQHFQWKuSwGJoB01MAWgIR0CSfsRPGhmHdX2UKGgGR0BxTxUDMeOoaAdNMAFoCEdAkoFaYqoZRHV9lChoBkdAcNSDklu3t2gHTZEBaAhHQJKBj6/IsAh1fZQoaAZHQHD5tR77bcpoB01EAWgIR0CSgZ14xDb8dX2UKGgGR0BhJLyDqW1MaAdN6ANoCEdAkoKYyoGY8nV9lChoBkdAcKQEIgNgB2gHTbQBaAhHQJKDCrWAf+11fZQoaAZHQHH2dcry1/loB00nAmgIR0CSg0cqvvBrdX2UKGgGR0BhlxRGc4HYaAdN6ANoCEdAkoQQPEsJ6nV9lChoBkdAcS/pTuOS4mgHTVUBaAhHQJKXt9JBgNR1fZQoaAZHQHKlA8W9DhNoB00XAWgIR0CSmHmPYFq0dX2UKGgGR0BvpdUn5SFXaAdNZAFoCEdAkpn9GAkLQXV9lChoBkdAcBfqaw2VFGgHTbYBaAhHQJKhGgf2bod1fZQoaAZHQG87iQtBfKJoB00qAWgIR0CSo3AHVwxWdX2UKGgGR0BqyTW5H3DfaAdNbwFoCEdAkqSRew9q13V9lChoBkdAbacMEzO5a2gHTUoBaAhHQJKlYIdELIB1fZQoaAZHQGunPomois5oB03YAmgIR0CSpW08eS0TdX2UKGgGR0Bwtp4Y77sOaAdNJwFoCEdAkqV6lgtvoHV9lChoBkdAcCSHJ9y93GgHTU4BaAhHQJKn91q33Ht1fZQoaAZHQHCCYaHbh3toB01yAWgIR0CSp/hq0tyxdX2UKGgGR0Bh/A7DEWIoaAdN6ANoCEdAkqmvMfRu0nV9lChoBkdAcBeHNHH3lGgHTbMBaAhHQJKrDuRcNYt1fZQoaAZHQGFEPq9oN/hoB03oA2gIR0CSq+SJj2BbdX2UKGgGR0BvPc8eS0SiaAdNXgFoCEdAkqydJrcj7nV9lChoBkdAcHxz6rNnoWgHTUsBaAhHQJKwVKg7HQ11fZQoaAZHQGwcJ/XoTwloB03aAWgIR0CSsMFzuF6BdX2UKGgGR0BstuPYFqzraAdNLgFoCEdAkrE2+PBBRnV9lChoBkdAb0BRPXTVlWgHTTsBaAhHQJKyf+n62v11fZQoaAZHQHDb74nF5v9oB01AAWgIR0CSsqtfXwsodX2UKGgGR0BhWWilBQenaAdN6ANoCEdAkrPsySFGonV9lChoBkdAcZk7Wd3B6GgHTSgBaAhHQJK0Kd1+y7h1fZQoaAZHQG3+X5nDiwVoB02XAWgIR0CStNJYkmhNdX2UKGgGR0BxuCvPkaMraAdN5QJoCEdAkrX7B42S+3V9lChoBkdAcWmwAU+LWWgHTVsBaAhHQJK3j2dupCN1fZQoaAZHQHDeZoXbdrRoB01cAWgIR0CSuq4/eLvUdX2UKGgGR0BwZRYA80UHaAdNeAFoCEdAkrsn2VVxTHV9lChoBkdAcBVMcp9ZzWgHTfcBaAhHQJK8jdEb5uZ1fZQoaAZHQHCFvvrnkktoB00/AWgIR0CSvW4i5d4WdX2UKGgGR0BvRMb3oLXuaAdNOwFoCEdAkr2kf9xZMnV9lChoBkdAbzTeQ+2VmmgHTcYBaAhHQJK9r8R+SbJ1fZQoaAZHQG/Nog/1QIloB01KAWgIR0CSvp6zmfXgdX2UKGgGR0Btz10Rvm5laAdNRwFoCEdAkr+v/WDpT3V9lChoBkdAbFWzD4xk/mgHTRsBaAhHQJLANDrqt5l1fZQoaAZHQHBDNYbKifxoB01eAWgIR0CSwiS2phnbdX2UKGgGR0Bs0HtBv73xaAdNdQFoCEdAksLRqsU7CHV9lChoBkdAcC6X1anrIGgHTRQBaAhHQJLC3BacI7h1fZQoaAZHQG5reJP69ChoB01EAWgIR0CSwwxO+IuXdX2UKGgGR0BgmYKIBRyfaAdN6ANoCEdAktlWKl54W3V9lChoBkdANMuaOPvKEGgHTQcBaAhHQJLZ56Skj5d1fZQoaAZHQHGsZoPCl8BoB03zAWgIR0CS2xpnpSrHdX2UKGgGR0BFbhaLXL/0aAdNAwFoCEdAktv0se4kNXV9lChoBkdAL2IBzV+ZxGgHS/1oCEdAkt38OwxFiXV9lChoBkdAb+WCTUy57WgHTTYBaAhHQJLeKBXjlxR1fZQoaAZHQHAO8EaESM9oB01+AWgIR0CS3mL5RCQcdX2UKGgGR0BwfexRl6JJaAdNZgFoCEdAkt7yudPLxXV9lChoBkdAbvcFPi1iOWgHTT0BaAhHQJLfRnZkCmx1fZQoaAZHQGKGjR+jM3ZoB03oA2gIR0CS4dLXL/0edX2UKGgGR0BtLgsyzollaAdNGgFoCEdAkuH63qiXY3V9lChoBkdAbawliz9jw2gHTT8BaAhHQJLjWFyq+8J1fZQoaAZHQHGRp/CqIadoB01fAWgIR0CS49gx8D0UdX2UKGgGR0Bxfq7dznzQaAdNEQFoCEdAkuRAnH/953V9lChoBkdAcZjGr0aqCGgHTWEBaAhHQJLkr/YJ3Pl1fZQoaAZHQG1tbrTpgThoB03dAWgIR0CS5ouyNXHSdX2UKGgGR0BtHroQnQY2aAdNRwFoCEdAkucEupS75HV9lChoBkdAbE2w0O3DvWgHTYEBaAhHQJLn9W8yvcJ1fZQoaAZHQG59bdSEUTNoB00kAWgIR0CS6N3aBZp0dX2UKGgGR0BxWV7iQ1aXaAdNcgFoCEdAkulhf8dgfHV9lChoBkdAcPyzlLeyiWgHTRkBaAhHQJLpYm6XjVB1fZQoaAZHQHIZXAM2FWZoB0vpaAhHQJLqOMn7YTV1fZQoaAZHQHIpp4KQaJhoB01WAWgIR0CS6lCbMHKPdX2UKGgGR0BwvCAnUlRhaAdNawFoCEdAkurUpVjqfXV9lChoBkdAcOLpUPxx1mgHTXUBaAhHQJLr4re67NB1fZQoaAZHQHEN8HSnccloB002AWgIR0CS7Gj6N2kjdX2UKGgGR0Brnk7Sy+pPaAdNSAFoCEdAku5+9eyAx3V9lChoBkdAcBPPgNwzcmgHTT0BaAhHQJLunVnVXmx1fZQoaAZHQG9utTLns9loB01mAWgIR0CS8JZpztCzdX2UKGgGR0BuUk4cWCVbaAdNUwFoCEdAkvMO2JBPbnV9lChoBkdAbf21ejVQRGgHTWYBaAhHQJLzXTCtRvZ1fZQoaAZHQEavm16Vt41oB00jAWgIR0CS8+HKOktVdX2UKGgGR0Bw5JAlfJFLaAdNQAFoCEdAkvR/mxMWXXV9lChoBkdAcJC8BdUsF2gHTcMBaAhHQJL1Kb5M10l1fZQoaAZHQDvJgWrOqvNoB00QAWgIR0CS90+wkgOjdX2UKGgGR0BdeuAiFCb+aAdN6ANoCEdAkveFSCOFQHV9lChoBkdAbMptzjm0V2gHTV8BaAhHQJL3kWbgCOp1fZQoaAZHQHCnGNNrTH9oB01dAWgIR0CS95qaPS2IdX2UKGgGR0BxSZ0r9VFQaAdNDwFoCEdAkvmDMNc4YXV9lChoBkdAcOtn2ZiNKmgHTeQBaAhHQJL562F36hx1fZQoaAZHQHFOxKxs2vVoB01GAWgIR0CS+4MKTjebdX2UKGgGR0BxGt2ovSMMaAdNLQFoCEdAkvy/ECNjsnV9lChoBkdAQn//DLr5ZmgHS+xoCEdAkv0uxjawlnV9lChoBkdAcC1SnLq2SmgHTRwBaAhHQJL+T3j+7191ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}